Using an EeonTex Conductive Stretchable Elastic Fibre for Hand Action Recognition

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Gasak Abdul-Hussain, William Holderbaum, Theodoros Theodoridis, Guowu Wei, Haitham El-Hussieny, Juan Antonio Ferriz-Papi
{"title":"Using an EeonTex Conductive Stretchable Elastic Fibre for Hand Action Recognition","authors":"Gasak Abdul-Hussain, William Holderbaum, Theodoros Theodoridis, Guowu Wei, Haitham El-Hussieny, Juan Antonio Ferriz-Papi","doi":"10.4028/p-eeodk5","DOIUrl":null,"url":null,"abstract":"Tactile sensors in wearable devices have gained attention for their potential applications in enhancing amenability, generation, and functionality for the human body, including sensing and control. This study elaborates on the design of a tactile sensor consisting of EeonTex conductive stretchable elastic fibre, which possesses a bi-directionally stretchable elastic fibre, and was formulated by coating nylon/spandex with a long-lasting conductive formulation. This fabric has proven to be beneficial for use in various different e-tactile applications. The authors systematically investigated the performance of the tactile sensor via 2 different manipulative gestures on a part of the upper limb of two different subjects. The tactile sensor was observed to change its electrical resistance when mechanical force was applied to its surface. It was also noted to be lightweight, inexpensive, stretchable, flexible, and easy to design and set up. This type of tactile sensor possesses the ability to recognise the intention of muscle movement and measure the muscle activities from the forearm. The prime objective of this study was to use such sensors as sleeves mounted on the forearms of the upper limbs. The reasoning behind this was that when muscle contract, they change their shape which in turn results in mechanical pressure being applied to the sensor. Experimental results showed that the tactile sensor’s feedback successfully detected open/closed hands when the sensor sleeve was worn on the forearm region.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-eeodk5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tactile sensors in wearable devices have gained attention for their potential applications in enhancing amenability, generation, and functionality for the human body, including sensing and control. This study elaborates on the design of a tactile sensor consisting of EeonTex conductive stretchable elastic fibre, which possesses a bi-directionally stretchable elastic fibre, and was formulated by coating nylon/spandex with a long-lasting conductive formulation. This fabric has proven to be beneficial for use in various different e-tactile applications. The authors systematically investigated the performance of the tactile sensor via 2 different manipulative gestures on a part of the upper limb of two different subjects. The tactile sensor was observed to change its electrical resistance when mechanical force was applied to its surface. It was also noted to be lightweight, inexpensive, stretchable, flexible, and easy to design and set up. This type of tactile sensor possesses the ability to recognise the intention of muscle movement and measure the muscle activities from the forearm. The prime objective of this study was to use such sensors as sleeves mounted on the forearms of the upper limbs. The reasoning behind this was that when muscle contract, they change their shape which in turn results in mechanical pressure being applied to the sensor. Experimental results showed that the tactile sensor’s feedback successfully detected open/closed hands when the sensor sleeve was worn on the forearm region.
使用EeonTex导电可拉伸弹性纤维进行手部动作识别
可穿戴设备中的触觉传感器因其在增强人体适应性、生成和功能(包括传感和控制)方面的潜在应用而受到关注。本研究详细阐述了一种由EeonTex导电可拉伸弹性纤维组成的触觉传感器的设计,该传感器具有双向可拉伸弹性纤维,并通过涂覆尼龙/氨纶制成持久导电配方。这种织物已被证明在各种不同的电子触觉应用中是有益的。作者系统地研究了触觉传感器通过两种不同的操作手势在两个不同的对象上肢的一部分的性能。当机械力作用于触觉传感器表面时,观察到它的电阻会发生变化。它还被注意到重量轻,价格便宜,可拉伸,灵活,易于设计和设置。这种类型的触觉传感器具有识别肌肉运动意图和测量前臂肌肉活动的能力。本研究的主要目的是将此类传感器安装在上肢的前臂上。这背后的原因是,当肌肉收缩时,它们会改变形状,从而导致对传感器施加机械压力。实验结果表明,当传感器套筒佩戴在前臂区域时,触觉传感器的反馈能够成功检测手的开/闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信