{"title":"Mechanical and microstructural characteristics of structural concrete containing RCA treated with sodium metasilicate","authors":"Shubham Bansal, Lokesh Choudhary, Megha Kalra, Niragi Dave, Anil Kumar Sharma","doi":"10.1108/jedt-03-2023-0109","DOIUrl":null,"url":null,"abstract":"Purpose One of the most contested and anticipated research issues is the acceptability of using recycled aggregates instead of fresh aggregates. This study aims to look at the possibility of replacing fresh aggregates with 15%, 30%, 60% and 100% recycled aggregates. Design/methodology/approach The research is divided into two stages. The compressive, split tensile, flexural and bond strength of the various mixes were examined in the first phase using untreated recycled concrete aggregates (RCA). The second phase entails chemically treating RCA with a 10% 0.1 M sodium metasilicate solution to evaluate differences in strength, indicating the success of the treatment performed. Microstructural experiments such as scanning electron microscopy and X-ray diffraction were also conducted to evaluate the formation of interfacial transition zone (ITZ) in treated and untreated RCA specimens. Findings The observed findings reveal a decrease in concrete strength with increasing RCA concentration; however, when treated RCA was used, the strengths increased significantly when compared to untreated samples. The findings also include curves indicating the correlation between compressive strength and other mechanical strength parameters for an optimum mix of concrete prepared with 30% RCA replacement. Originality/value The study through its novel approach, demonstrates the effect of pretreatment of RCA in the absence of any standardized chemical treatment methodology and presents significant potential in minimizing reliance on fresh aggregates used in concrete, lowering building costs and promoting the use of waste materials in construction.","PeriodicalId":46533,"journal":{"name":"Journal of Engineering Design and Technology","volume":"143 S268","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jedt-03-2023-0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose One of the most contested and anticipated research issues is the acceptability of using recycled aggregates instead of fresh aggregates. This study aims to look at the possibility of replacing fresh aggregates with 15%, 30%, 60% and 100% recycled aggregates. Design/methodology/approach The research is divided into two stages. The compressive, split tensile, flexural and bond strength of the various mixes were examined in the first phase using untreated recycled concrete aggregates (RCA). The second phase entails chemically treating RCA with a 10% 0.1 M sodium metasilicate solution to evaluate differences in strength, indicating the success of the treatment performed. Microstructural experiments such as scanning electron microscopy and X-ray diffraction were also conducted to evaluate the formation of interfacial transition zone (ITZ) in treated and untreated RCA specimens. Findings The observed findings reveal a decrease in concrete strength with increasing RCA concentration; however, when treated RCA was used, the strengths increased significantly when compared to untreated samples. The findings also include curves indicating the correlation between compressive strength and other mechanical strength parameters for an optimum mix of concrete prepared with 30% RCA replacement. Originality/value The study through its novel approach, demonstrates the effect of pretreatment of RCA in the absence of any standardized chemical treatment methodology and presents significant potential in minimizing reliance on fresh aggregates used in concrete, lowering building costs and promoting the use of waste materials in construction.
期刊介绍:
- Design strategies - Usability and adaptability - Material, component and systems performance - Process control - Alternative and new technologies - Organizational, management and research issues - Human factors - Environmental, quality and health and safety issues - Cost and life cycle issues - Sustainability criteria, indicators, measurement and practices - Risk management - Entrepreneurship Law, regulation and governance - Design, implementing, managing and practicing innovation - Visualization, simulation, information and communication technologies - Education practices, innovation, strategies and policy issues.