{"title":"Numerical and experimental study of the baffle-based split and recombine chamber (B-SARC) micromixers","authors":"Sanjay A. Pawar, Vimal Kumar Chouksey","doi":"10.1515/cppm-2023-0053","DOIUrl":null,"url":null,"abstract":"Abstract Microfluidic technology has garnered growing interest in diverse domains. The efficacy and precision of microfluidic devices are significantly influenced by micromixing processes. Micromixers, comprising microchannels designed to blend fluids within a confined space and limited flow pathway, constitute indispensable components of microfluidic systems. Among these components, the micromixer stands out as a critical element, tasked with achieving maximal mixing efficiency while imposing minimal pressure drop. This paper focusses on the numerical and experimental study the baffle-based split and recombine chamber (B-SARC) micromixers. The models of a curved wavy micromixer (without baffle) and the baffle-based split and recombine chamber (B-SARC) micromixers with three baffles such as square, triangular and teardrop shaped baffles been developed using COMSOL Multiphysics software. The mixing performance analysis has been carried out by studying the mixing index and pressure drop. The influence of baffle shapes i.e. square, triangular and teardrop shaped baffles of aspect ratio 1, 1.5 and 2 on mixing performance analysis has been investigated numerically, for widespread assortment of Reynolds numbers (Re) lies between 0.1 and 90. The polydimethylsiloxane (PDMS) baffle-based split and recombine chamber (B-SARC) micromixers have been fabricated. Further, the experimental analysis has been carried out. The experimental analysis for pressure drop as well as mixing index has been performed. A good agreement has been observed between experimental and computational results which leads to validation of the computational results. The results revel the role of diffusion at lower Reynolds numbers and the production of derivative flows owing to advection at higher Reynolds numbers within the considered range of Re.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Microfluidic technology has garnered growing interest in diverse domains. The efficacy and precision of microfluidic devices are significantly influenced by micromixing processes. Micromixers, comprising microchannels designed to blend fluids within a confined space and limited flow pathway, constitute indispensable components of microfluidic systems. Among these components, the micromixer stands out as a critical element, tasked with achieving maximal mixing efficiency while imposing minimal pressure drop. This paper focusses on the numerical and experimental study the baffle-based split and recombine chamber (B-SARC) micromixers. The models of a curved wavy micromixer (without baffle) and the baffle-based split and recombine chamber (B-SARC) micromixers with three baffles such as square, triangular and teardrop shaped baffles been developed using COMSOL Multiphysics software. The mixing performance analysis has been carried out by studying the mixing index and pressure drop. The influence of baffle shapes i.e. square, triangular and teardrop shaped baffles of aspect ratio 1, 1.5 and 2 on mixing performance analysis has been investigated numerically, for widespread assortment of Reynolds numbers (Re) lies between 0.1 and 90. The polydimethylsiloxane (PDMS) baffle-based split and recombine chamber (B-SARC) micromixers have been fabricated. Further, the experimental analysis has been carried out. The experimental analysis for pressure drop as well as mixing index has been performed. A good agreement has been observed between experimental and computational results which leads to validation of the computational results. The results revel the role of diffusion at lower Reynolds numbers and the production of derivative flows owing to advection at higher Reynolds numbers within the considered range of Re.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.