Complex turbulent exchange coefficient in Akerblom–Ekman model

IF 0.9 4区 数学 Q2 MATHEMATICS
Philipp L. Bykov, Vladimir A. Gordin
{"title":"Complex turbulent exchange coefficient in Akerblom–Ekman model","authors":"Philipp L. Bykov, Vladimir A. Gordin","doi":"10.1515/jiip-2021-0039","DOIUrl":null,"url":null,"abstract":"Abstract The turbulent exchange in boundary layer models is usually characterized by a scalar eddy viscosity coefficient assumed to be a positive function of the vertical variable. We introduce a more general form for the turbulence exchange description, which includes two functions that describe the turbulence without any assumption about their positivity. We construct a model of the Akerblom–Ekman type, but with a complex coefficient of turbulent exchange. The basic quality criterion for these models and algorithms is the maximal agreement with meteorological observations. We optimize the agreement between the global meteorological archive of high-resolution wind observations that are provided by World Meteorological Organization (WMO) in Binary Universal Form for the Representation (BUFR). The main result of our work is that agreement between model solutions and observations will be much better if the turbulent exchange coefficient is optimized in the space of all complex-valued functions, and not limited to the cone of real positive functions.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"136 S236","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2021-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The turbulent exchange in boundary layer models is usually characterized by a scalar eddy viscosity coefficient assumed to be a positive function of the vertical variable. We introduce a more general form for the turbulence exchange description, which includes two functions that describe the turbulence without any assumption about their positivity. We construct a model of the Akerblom–Ekman type, but with a complex coefficient of turbulent exchange. The basic quality criterion for these models and algorithms is the maximal agreement with meteorological observations. We optimize the agreement between the global meteorological archive of high-resolution wind observations that are provided by World Meteorological Organization (WMO) in Binary Universal Form for the Representation (BUFR). The main result of our work is that agreement between model solutions and observations will be much better if the turbulent exchange coefficient is optimized in the space of all complex-valued functions, and not limited to the cone of real positive functions.
Akerblom-Ekman模型中的复杂湍流交换系数
边界层模型中的湍流交换通常用一个标量涡流粘度系数来表征,该系数假定为垂直变量的正函数。我们引入了湍流交换描述的一种更一般的形式,它包括两个描述湍流的函数,没有任何关于它们的正性的假设。我们构造了一个Akerblom-Ekman型模型,但加入了一个复杂的湍流交换系数。这些模型和算法的基本质量标准是与气象观测的最大一致性。我们优化了世界气象组织(WMO)以二进制通用表示形式(BUFR)提供的全球高分辨率风观测气象档案之间的一致性。我们工作的主要结果是,如果湍流交换系数在所有复值函数的空间中优化,而不限于实正函数的锥,则模型解与观测值之间的一致性将会更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信