{"title":"On the distribution of the Hodge locus","authors":"Gregorio Baldi, Bruno Klingler, Emmanuel Ullmo","doi":"10.1007/s00222-023-01226-0","DOIUrl":null,"url":null,"abstract":"Abstract Given a polarizable ℤ-variation of Hodge structures $\\mathbb{V}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> </mml:math> over a complex smooth quasi-projective base $S$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> , a classical result of Cattani, Deligne and Kaplan says that its Hodge locus (i.e. the locus where exceptional Hodge tensors appear) is a countable union of irreducible algebraic subvarieties of $S$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> , called the special subvarieties for $\\mathbb{V}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> </mml:math> . Our main result in this paper is that, if the level of ${\\mathbb{V}}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> </mml:math> is at least 3, this Hodge locus is in fact a finite union of such special subvarieties (hence is algebraic), at least if we restrict ourselves to the Hodge locus factorwise of positive period dimension (Theorem 1.5). For instance the Hodge locus of positive period dimension of the universal family of degree $d$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>d</mml:mi> </mml:math> smooth hypersurfaces in $\\mathbf{P}^{n+1}_{\\mathbb{C}}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , $n\\geq 3$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:math> , $d\\geq 5$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:math> and $(n,d)\\neq (4,5)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:math> , is algebraic. On the other hand we prove that in level 1 or 2, the Hodge locus is analytically dense in $S^{\\mbox{an}}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mtext>an</mml:mtext> </mml:msup> </mml:math> as soon as it contains one typical special subvariety. These results follow from a complete elucidation of the distribution in $S$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> of the special subvarieties in terms of typical/atypical intersections, with the exception of the atypical special subvarieties of zero period dimension.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01226-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 19
Abstract
Abstract Given a polarizable ℤ-variation of Hodge structures $\mathbb{V}$ V over a complex smooth quasi-projective base $S$ S , a classical result of Cattani, Deligne and Kaplan says that its Hodge locus (i.e. the locus where exceptional Hodge tensors appear) is a countable union of irreducible algebraic subvarieties of $S$ S , called the special subvarieties for $\mathbb{V}$ V . Our main result in this paper is that, if the level of ${\mathbb{V}}$ V is at least 3, this Hodge locus is in fact a finite union of such special subvarieties (hence is algebraic), at least if we restrict ourselves to the Hodge locus factorwise of positive period dimension (Theorem 1.5). For instance the Hodge locus of positive period dimension of the universal family of degree $d$ d smooth hypersurfaces in $\mathbf{P}^{n+1}_{\mathbb{C}}$ PCn+1 , $n\geq 3$ n≥3 , $d\geq 5$ d≥5 and $(n,d)\neq (4,5)$ (n,d)≠(4,5) , is algebraic. On the other hand we prove that in level 1 or 2, the Hodge locus is analytically dense in $S^{\mbox{an}}$ San as soon as it contains one typical special subvariety. These results follow from a complete elucidation of the distribution in $S$ S of the special subvarieties in terms of typical/atypical intersections, with the exception of the atypical special subvarieties of zero period dimension.