Optimal controller selection and migration in large scale software defined networks for next generation internet of things

IF 2.8 Q2 MULTIDISCIPLINARY SCIENCES
Mohammad Shahzad, Lu Liu, Nacer Belkout, Nick Antonopoulos
{"title":"Optimal controller selection and migration in large scale software defined networks for next generation internet of things","authors":"Mohammad Shahzad, Lu Liu, Nacer Belkout, Nick Antonopoulos","doi":"10.1007/s42452-023-05535-0","DOIUrl":null,"url":null,"abstract":"Abstract The substantial amount of IoT traffic, coupled with control messages, places a heavy burden on SDN controllers, which compromises their capacity. We investigate how SDN can revolutionize the conventional approach, aiming to overcome the limitations of communication overhead. Additionally, we delve into the essential optimizations required to minimize control overhead and migrations. Determining the appropriate controller necessitates the implementation of a mechanism that justifies the selection. Once the optimal controller has been identified, migration can be initiated. This paper introduces a solution that employs the NSGA-II algorithm to achieve the optimal selection of controllers. We assess the performance of the NSGA-II migration approach linking with the length-based same destination aggregation proposed in our previous work, in terms of packet delivery, packet loss, performance metrics, and the cost associated with the selected optimal controller.","PeriodicalId":21821,"journal":{"name":"SN Applied Sciences","volume":"90 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42452-023-05535-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The substantial amount of IoT traffic, coupled with control messages, places a heavy burden on SDN controllers, which compromises their capacity. We investigate how SDN can revolutionize the conventional approach, aiming to overcome the limitations of communication overhead. Additionally, we delve into the essential optimizations required to minimize control overhead and migrations. Determining the appropriate controller necessitates the implementation of a mechanism that justifies the selection. Once the optimal controller has been identified, migration can be initiated. This paper introduces a solution that employs the NSGA-II algorithm to achieve the optimal selection of controllers. We assess the performance of the NSGA-II migration approach linking with the length-based same destination aggregation proposed in our previous work, in terms of packet delivery, packet loss, performance metrics, and the cost associated with the selected optimal controller.
面向下一代物联网的大规模软件定义网络的最优控制器选择与迁移
大量的物联网流量,加上控制消息,给SDN控制器带来了沉重的负担,影响了它们的容量。我们研究了SDN如何彻底改变传统的方法,旨在克服通信开销的限制。此外,我们还深入研究了最小化控制开销和迁移所需的基本优化。确定适当的控制器需要实现一种证明选择合理性的机制。一旦确定了最优控制器,就可以开始迁移。本文介绍了一种采用NSGA-II算法实现控制器最优选择的解决方案。我们评估了NSGA-II迁移方法与我们之前工作中提出的基于长度的相同目的地聚合的性能,包括数据包传输、数据包丢失、性能指标以及与所选最优控制器相关的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SN Applied Sciences
SN Applied Sciences MULTIDISCIPLINARY SCIENCES-
自引率
3.80%
发文量
292
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信