Donald Woukeng, Damian Sadowski, Jakub Leśkiewicz, Michał Lipiński, Tomasz Kapela
{"title":"Rigorous computation in dynamics based on topological methods for multivector fields","authors":"Donald Woukeng, Damian Sadowski, Jakub Leśkiewicz, Michał Lipiński, Tomasz Kapela","doi":"10.1007/s41468-023-00149-2","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the theoretical results of Mrozek et al. (Commun Nonlinear Sci Numer Simul 108:106–226, 2022) we present an algorithmic construction of a transversal cellular decomposition for a planar ODE. We then use the associated combinatorial multivector field to algorithmically detect the existence of an isolated invariant set with the Conley index of a periodic orbit and admitting a combinatorial Poincaré section. This construction combined with the theoretical results of Mrozek et al. (2022) leads to a method for automatized computer assisted proofs of the existence of periodic solutions in ODE’s.","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":"28 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-023-00149-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Motivated by the theoretical results of Mrozek et al. (Commun Nonlinear Sci Numer Simul 108:106–226, 2022) we present an algorithmic construction of a transversal cellular decomposition for a planar ODE. We then use the associated combinatorial multivector field to algorithmically detect the existence of an isolated invariant set with the Conley index of a periodic orbit and admitting a combinatorial Poincaré section. This construction combined with the theoretical results of Mrozek et al. (2022) leads to a method for automatized computer assisted proofs of the existence of periodic solutions in ODE’s.