The Calkin algebra, Kazhdan's property (T), and strongly self‐absorbing C∗$\mathrm{C}^*$‐algebras

IF 1.5 1区 数学 Q1 MATHEMATICS
Ilijas Farah
{"title":"The Calkin algebra, Kazhdan's property (T), and strongly self‐absorbing C∗$\\mathrm{C}^*$‐algebras","authors":"Ilijas Farah","doi":"10.1112/plms.12569","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that the relative commutant of every separable nuclear ‐subalgebra of the Calkin algebra has a unital copy of Cuntz algebra . We prove that the Calkin algebra has a separable ‐subalgebra whose relative commutant has no simple, unital, and noncommutative ‐subalgebra. On the other hand, the corona of every stable, separable ‐algebra that tensorially absorbs the Jiang–Su algebra has the property that the relative commutant of every separable ‐subalgebra contains a unital copy of . Analogous result holds for other strongly self‐absorbing ‐algebras. As an application, the Calkin algebra is not isomorphic to the corona of the stabilization of the Cuntz algebra , any other Kirchberg algebra, or even the corona of the stabilization of any unital, ‐stable ‐algebra.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"24 9","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12569","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is well known that the relative commutant of every separable nuclear ‐subalgebra of the Calkin algebra has a unital copy of Cuntz algebra . We prove that the Calkin algebra has a separable ‐subalgebra whose relative commutant has no simple, unital, and noncommutative ‐subalgebra. On the other hand, the corona of every stable, separable ‐algebra that tensorially absorbs the Jiang–Su algebra has the property that the relative commutant of every separable ‐subalgebra contains a unital copy of . Analogous result holds for other strongly self‐absorbing ‐algebras. As an application, the Calkin algebra is not isomorphic to the corona of the stabilization of the Cuntz algebra , any other Kirchberg algebra, or even the corona of the stabilization of any unital, ‐stable ‐algebra.
Calkin代数,Kazhdan的性质(T)和强自吸收C *$ \ mathm {C}^*$‐代数
摘要卡尔金代数中每一个可分离核子代数的相对交换子都有一个孔兹代数的一元副本,这是众所周知的。证明了Calkin代数有一个可分离的子代数,其相对交换子没有单子代数、单子代数和非交换子代数。另一方面,每一个稳定的、可分离的、张拉吸收Jiang-Su代数的代数的电晕都具有这样的性质:每一个可分离的子代数的相对交换子都包含一个单位副本。类似的结果也适用于其他强自吸收代数。作为一个应用,Calkin代数不同构于Cuntz代数、任何其他Kirchberg代数的稳定的电晕,甚至不同构于任何一元、稳定的代数的稳定的电晕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信