Deformation of the Weighted Scalar Curvature

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Pak Tung Ho, Jinwoo Shin
{"title":"Deformation of the Weighted Scalar Curvature","authors":"Pak Tung Ho, Jinwoo Shin","doi":"10.3842/sigma.2023.087","DOIUrl":null,"url":null,"abstract":"Inspired by the work of Fischer-Marsden [Duke Math. J. 42 (1975), 519-547], we study in this paper the deformation of the weighted scalar curvature. By studying the kernel of the formal $L_\\phi^2$-adjoint for the linearization of the weighted scalar curvature, we prove several geometric results. In particular, we define a weighted vacuum static space, and study locally conformally flat weighted vacuum static spaces. We then prove some stability results of the weighted scalar curvature on flat spaces. Finally, we consider the prescribed weighted scalar curvature problem on closed smooth metric measure spaces.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"26 3","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the work of Fischer-Marsden [Duke Math. J. 42 (1975), 519-547], we study in this paper the deformation of the weighted scalar curvature. By studying the kernel of the formal $L_\phi^2$-adjoint for the linearization of the weighted scalar curvature, we prove several geometric results. In particular, we define a weighted vacuum static space, and study locally conformally flat weighted vacuum static spaces. We then prove some stability results of the weighted scalar curvature on flat spaces. Finally, we consider the prescribed weighted scalar curvature problem on closed smooth metric measure spaces.
加权标量曲率的变形
受fisher - marsden(杜克数学)的启发。[j] . 42(1975), 519-547],本文研究了加权标量曲率的变形。通过研究加权标量曲率线性化的形式$L_\phi^2$伴随的核,证明了几个几何结果。特别地,我们定义了一个加权真空静态空间,并研究了局部共形平坦加权真空静态空间。然后证明了平面空间上加权标量曲率的一些稳定性结果。最后,我们考虑了闭光滑度量测度空间上的规定加权标量曲率问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信