Experimental and Theoretical Reproducibility Research on the Earthquake Resistance of Cylindrical Steel Tanks

IF 1.9 Q3 ENGINEERING, MECHANICAL
Vibration Pub Date : 2023-11-04 DOI:10.3390/vibration6040057
Nurlan Zhangabay, Marco Bonopera, Akmaral Utelbayeva, Timur Tursunkululy, Murat Rakhimov
{"title":"Experimental and Theoretical Reproducibility Research on the Earthquake Resistance of Cylindrical Steel Tanks","authors":"Nurlan Zhangabay, Marco Bonopera, Akmaral Utelbayeva, Timur Tursunkululy, Murat Rakhimov","doi":"10.3390/vibration6040057","DOIUrl":null,"url":null,"abstract":"This article analyzes the convergence of the obtained values as a result of the authors’ earlier experimental and theoretical studies. On the basis of the correlations, it was found that the analyses of a traditional cylindrical steel tank without a steel wire strand wrapping and with a filling level of zero by a liquid showed a difference in natural vibration frequencies of 8.4%, while with half and maximal filling by a liquid showed differences equal to 3.2% and 6.2%, respectively. Vice versa, analyses of a cylindrical steel tank with a steel wire strand winding pitch of a = 3d and with a filling level of zero by a liquid showed a difference in natural vibration frequencies of 8.1%, while with half and maximum filling by a liquid and with the same steel wire strand winding pitch showed differences of 10.1% and 5.9%, respectively. Conversely, analyses of a cylindrical steel tank with a steel wire strand winding pitch of a = d and in absence of filling level amounted to a difference of 5.5%, while with half and maximum filling and with the same steel wire strand winding pitch of a = d, differences of 1.6% and 1.4% were, respectively, achieved. Based on the aforementioned results, the general difference between experimental and theoretical vibration frequencies showed up to 10%, which is a satisfactory result of convergence. The obtained findings of this research can be used by engineers and technical workers in the industries of various fields, research institutes and professional companies in designing new earthquake-resistant steel tanks and strengthening existing ones. Conclusions were then mentioned at the end of the article.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"39 17","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article analyzes the convergence of the obtained values as a result of the authors’ earlier experimental and theoretical studies. On the basis of the correlations, it was found that the analyses of a traditional cylindrical steel tank without a steel wire strand wrapping and with a filling level of zero by a liquid showed a difference in natural vibration frequencies of 8.4%, while with half and maximal filling by a liquid showed differences equal to 3.2% and 6.2%, respectively. Vice versa, analyses of a cylindrical steel tank with a steel wire strand winding pitch of a = 3d and with a filling level of zero by a liquid showed a difference in natural vibration frequencies of 8.1%, while with half and maximum filling by a liquid and with the same steel wire strand winding pitch showed differences of 10.1% and 5.9%, respectively. Conversely, analyses of a cylindrical steel tank with a steel wire strand winding pitch of a = d and in absence of filling level amounted to a difference of 5.5%, while with half and maximum filling and with the same steel wire strand winding pitch of a = d, differences of 1.6% and 1.4% were, respectively, achieved. Based on the aforementioned results, the general difference between experimental and theoretical vibration frequencies showed up to 10%, which is a satisfactory result of convergence. The obtained findings of this research can be used by engineers and technical workers in the industries of various fields, research institutes and professional companies in designing new earthquake-resistant steel tanks and strengthening existing ones. Conclusions were then mentioned at the end of the article.
圆柱形钢储罐抗震性能的实验与理论再现性研究
本文分析了作者早期实验和理论研究所得值的收敛性。在此基础上,分析发现,无钢丝缠绕的传统圆柱形钢罐与液体填充量为零时的固有振动频率差异为8.4%,液体填充量为一半和最大时的固有振动频率差异分别为3.2%和6.2%。反之,当钢绞线缠绕节距为a = 3d、液体填充量为零时,圆柱形钢槽的固有振动频率差异为8.1%,而液体填充量为一半和最大、相同钢绞线缠绕节距时,固有振动频率差异分别为10.1%和5.9%。相反,在没有填充水平的情况下,当钢绞线缠绕节距为a = d时,圆柱形钢槽的分析结果差异为5.5%,而在相同的钢绞线缠绕节距为a = d的情况下,半填充和最大填充的分析结果差异分别为1.6%和1.4%。基于上述结果,实验振动频率与理论振动频率的总体差异可达10%,这是令人满意的收敛结果。本研究成果可供各领域、科研院所和专业公司的工程技术人员用于设计新的抗震钢罐和加固现有的抗震钢罐。然后在文章的末尾提到了结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信