Predicting the Gap in the Day-Ahead and Real-Time Market Prices Leveraging Exogenous Weather Data

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-11-04 DOI:10.3390/a16110508
Nika Nizharadze, Arash Farokhi Soofi, Saeed Manshadi
{"title":"Predicting the Gap in the Day-Ahead and Real-Time Market Prices Leveraging Exogenous Weather Data","authors":"Nika Nizharadze, Arash Farokhi Soofi, Saeed Manshadi","doi":"10.3390/a16110508","DOIUrl":null,"url":null,"abstract":"Predicting the price gap between the day-ahead Market (DAM) and the real-time Market (RTM) plays a vital role in the convergence bidding mechanism of Independent System Operators (ISOs) in wholesale electricity markets. This paper presents a model to predict the values of the price gap between the DAM and RTM using statistical machine learning algorithms and deep neural networks. In this paper, we seek to answer these questions: What will be the impact of predicting the DAM and RTM price gap directly on the prediction performance of learning methods? How can exogenous weather data affect the price gap prediction? In this paper, several exogenous features are collected, and the impacts of these features are examined to capture the best relations between the features and the target variable. An ensemble learning algorithm, namely the Random Forest (RF), is used to select the most important features. A Long Short-Term Memory (LSTM) network is used to capture long-term dependencies in predicting direct gap values between the markets stated. Moreover, the advantages of directly predicting the gap price rather than subtracting the price predictions of the DAM and RTM are shown. The presented results are based on the California Independent System Operator (CAISO)’s electricity market data for two years. The results show that direct gap prediction using exogenous weather features decreases the error of learning methods by 46%. Therefore, the presented method mitigates the prediction error of the price gap between the DAM and RTM. Thus, the convergence bidders can increase their profit, and the ISOs can tune their mechanism accordingly.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"32 13","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the price gap between the day-ahead Market (DAM) and the real-time Market (RTM) plays a vital role in the convergence bidding mechanism of Independent System Operators (ISOs) in wholesale electricity markets. This paper presents a model to predict the values of the price gap between the DAM and RTM using statistical machine learning algorithms and deep neural networks. In this paper, we seek to answer these questions: What will be the impact of predicting the DAM and RTM price gap directly on the prediction performance of learning methods? How can exogenous weather data affect the price gap prediction? In this paper, several exogenous features are collected, and the impacts of these features are examined to capture the best relations between the features and the target variable. An ensemble learning algorithm, namely the Random Forest (RF), is used to select the most important features. A Long Short-Term Memory (LSTM) network is used to capture long-term dependencies in predicting direct gap values between the markets stated. Moreover, the advantages of directly predicting the gap price rather than subtracting the price predictions of the DAM and RTM are shown. The presented results are based on the California Independent System Operator (CAISO)’s electricity market data for two years. The results show that direct gap prediction using exogenous weather features decreases the error of learning methods by 46%. Therefore, the presented method mitigates the prediction error of the price gap between the DAM and RTM. Thus, the convergence bidders can increase their profit, and the ISOs can tune their mechanism accordingly.
利用外生天气数据预测前一天和实时市场价格的差距
日前市场(DAM)与实时市场(RTM)之间的价格差预测对独立系统运营商(iso)在电力批发市场的聚合竞价机制中起着至关重要的作用。本文提出了一个利用统计机器学习算法和深度神经网络预测DAM和RTM之间价格差值的模型。在本文中,我们试图回答这些问题:预测DAM和RTM价格差距对学习方法的预测性能有什么直接影响?外生天气数据如何影响价差预测?本文收集了几个外生特征,并研究了这些特征的影响,以捕获特征与目标变量之间的最佳关系。一种集成学习算法,即随机森林(RF),用于选择最重要的特征。长短期记忆(LSTM)网络用于捕获预测市场之间直接缺口值的长期依赖关系。此外,还显示了直接预测缺口价格而不是减去DAM和RTM的价格预测的优势。本文给出的结果是基于加州独立系统运营商(CAISO)两年的电力市场数据。结果表明,使用外源天气特征的直接间隙预测使学习方法的误差降低了46%。因此,该方法减轻了DAM与RTM之间价格差距的预测误差。因此,收敛竞标者可以增加他们的利润,iso可以相应地调整他们的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信