{"title":"Photodamage to the lens in vitro: Implications of the Haber-Weiss reaction","authors":"S.D. Varma, J.M. Mooney","doi":"10.1016/0748-5514(86)90124-8","DOIUrl":null,"url":null,"abstract":"<div><p>Studies have been conducted to examine the implications of photochemical of O<sub>2</sub><sup>−</sup> and its derivatization to H<sub>2</sub>O<sub>2</sub> and OH· in the physiology of the lens in vitro. Physiological status was determined by measuring the uptake of rubidium by the intact tissue when cultured in riboflavin-containing medium, in dark and light, and in the presence and absence of various scanvengers. In the presence of light, the uptake of rubidium in the lens was greatly diminished; this suggests photodamage to the tissue. MnSOD and ferricyanide protected against this photochemical damage. The damaging process was thus initiated by the generation of O<sub>2</sub><sup>−</sup>. The tissue damage was also attenuated by catalase, ferrocyanide, and mannitol. These results, therefore, suggest the participation of hydrogen peroxide and the subsequent Haber-Weiss reaction in the photodamaging process.</p></div>","PeriodicalId":77737,"journal":{"name":"Journal of free radicals in biology & medicine","volume":"2 1","pages":"Pages 57-62"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0748-5514(86)90124-8","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of free radicals in biology & medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0748551486901248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Studies have been conducted to examine the implications of photochemical of O2− and its derivatization to H2O2 and OH· in the physiology of the lens in vitro. Physiological status was determined by measuring the uptake of rubidium by the intact tissue when cultured in riboflavin-containing medium, in dark and light, and in the presence and absence of various scanvengers. In the presence of light, the uptake of rubidium in the lens was greatly diminished; this suggests photodamage to the tissue. MnSOD and ferricyanide protected against this photochemical damage. The damaging process was thus initiated by the generation of O2−. The tissue damage was also attenuated by catalase, ferrocyanide, and mannitol. These results, therefore, suggest the participation of hydrogen peroxide and the subsequent Haber-Weiss reaction in the photodamaging process.