Predicting Drug Classification Codes by Feature Integration Using Multi-modal Autoencoders

Yi-Sue Jung, Jong-Hoon Park, Young-Rae Cho
{"title":"Predicting Drug Classification Codes by Feature Integration Using Multi-modal Autoencoders","authors":"Yi-Sue Jung, Jong-Hoon Park, Young-Rae Cho","doi":"10.5626/ktcp.2023.29.10.474","DOIUrl":null,"url":null,"abstract":"COVID-19와 같이 새롭게 등장한 질병에 신속히 효과적으로 대처하기 위하여 컴퓨터 알고리즘을 사용한 약물 재배치 기법이 주목받고 있다. 본 연구에서는 약물의 다양한 특성을 멀티모달 자동 인코더를 통해 통합하여 약물의 분류 체계인 ATC 코드를 예측하는 방법을 제안한다. 약물 간의 유사도는 약물의 화학 구조, 질병 또는 단백질과의 상관관계, 약물 간 상호작용, 약물 부작용 정보를 활용하여 계산하였고, 멀티모달 자동 인코더를 통해 이를 통합하여 하나의 약물 유사도 네트워크를 구성하였다. 또한, 약물-ATC 코드 이기종 네트워크를 구성하여 ATC 코드 예측을 진행하였다. 교차검증을 통해 실험 결과를 평가했을 때, 단일 유사도를 사용하는 경우 0.847의 AUC 값에서 병합된 유사도를 사용했을 때 0.914의 AUC 값으로 예측 정확도가 8.5% 향상되었다.","PeriodicalId":479646,"journal":{"name":"Jeongbogwahakoe keompyuting-ui silje nonmunji","volume":"37 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jeongbogwahakoe keompyuting-ui silje nonmunji","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5626/ktcp.2023.29.10.474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19와 같이 새롭게 등장한 질병에 신속히 효과적으로 대처하기 위하여 컴퓨터 알고리즘을 사용한 약물 재배치 기법이 주목받고 있다. 본 연구에서는 약물의 다양한 특성을 멀티모달 자동 인코더를 통해 통합하여 약물의 분류 체계인 ATC 코드를 예측하는 방법을 제안한다. 약물 간의 유사도는 약물의 화학 구조, 질병 또는 단백질과의 상관관계, 약물 간 상호작용, 약물 부작용 정보를 활용하여 계산하였고, 멀티모달 자동 인코더를 통해 이를 통합하여 하나의 약물 유사도 네트워크를 구성하였다. 또한, 약물-ATC 코드 이기종 네트워크를 구성하여 ATC 코드 예측을 진행하였다. 교차검증을 통해 실험 결과를 평가했을 때, 단일 유사도를 사용하는 경우 0.847의 AUC 값에서 병합된 유사도를 사용했을 때 0.914의 AUC 값으로 예측 정확도가 8.5% 향상되었다.
基于多模态自编码器的特征集成预测药物分类码
为了迅速有效应对COVID-19等新登场的疾病,使用计算机算法的药物再配置方法备受关注。本研究提出了将药物的多种特性通过多模态自动编码器进行整合,预测药物分类体系ATC代码的方法。药物之间的相似度是利用药物的化学结构、疾病或蛋白质之间的相关关系、药物之间的相互作用、药物副作用信息来计算的,通过多模态自动编码器将其整合,构成了一个药物相似度网络。此外,还构建药物-ATC代码异构网络,进行ATC代码预测。交叉验证评估实验结果时,使用单一相似度的AUC值为0.847,使用合并相似度的AUC值为0.914,预测准确度提高了8.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信