Andreas Wiegel, Andrés A. Peña-Olarte, Roberto Cudmani
{"title":"Perspectives of 3D Probabilistic Subsoil Modeling for BIM","authors":"Andreas Wiegel, Andrés A. Peña-Olarte, Roberto Cudmani","doi":"10.3390/geotechnics3040058","DOIUrl":null,"url":null,"abstract":"Building information modeling (BIM) in the planning and construction of infrastructure projects, such as roads, tunnels, and excavations, requires the generation of comprehensive 3D subsoil models that encompass relevant geological and geotechnical information. Presently, this process relies on the deterministic interpolation of discrete data points obtained from exploratory boreholes and soundings, resulting in a single deterministic prediction. Commonly employed interpolation methods for this purpose include radial basis function and kriging. This contribution introduces probabilistic methods for quantifying prediction uncertainty. The proposed modeling approach is illustrated using simple examples, demonstrating how to use sequential Gaussian and Indicator Simulation techniques to model sedimentary processes such as erosion and lenticular bedding. Subsequently, a site in Munich serves as a case study. The widely used industry foundation classes (IFC) schema allows the integration of the model into the BIM environment. A mapping procedure allows transferring voxel models to the IFC schema. This article discusses the significance of incorporating uncertainty quantification into subsoil modeling and shows its integration into the BIM framework. The proposed approach and its efficient integration with evolving BIM standards and methodologies provides valuable insights for the planning and construction of infrastructure projects.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"34 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geotechnics3040058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Building information modeling (BIM) in the planning and construction of infrastructure projects, such as roads, tunnels, and excavations, requires the generation of comprehensive 3D subsoil models that encompass relevant geological and geotechnical information. Presently, this process relies on the deterministic interpolation of discrete data points obtained from exploratory boreholes and soundings, resulting in a single deterministic prediction. Commonly employed interpolation methods for this purpose include radial basis function and kriging. This contribution introduces probabilistic methods for quantifying prediction uncertainty. The proposed modeling approach is illustrated using simple examples, demonstrating how to use sequential Gaussian and Indicator Simulation techniques to model sedimentary processes such as erosion and lenticular bedding. Subsequently, a site in Munich serves as a case study. The widely used industry foundation classes (IFC) schema allows the integration of the model into the BIM environment. A mapping procedure allows transferring voxel models to the IFC schema. This article discusses the significance of incorporating uncertainty quantification into subsoil modeling and shows its integration into the BIM framework. The proposed approach and its efficient integration with evolving BIM standards and methodologies provides valuable insights for the planning and construction of infrastructure projects.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.