Neda Kiani Mavi, Kerry Brown, Richard Fulford, Mark Goh
{"title":"Forecasting project success in the construction industry using adaptive neuro-fuzzy inference system","authors":"Neda Kiani Mavi, Kerry Brown, Richard Fulford, Mark Goh","doi":"10.1080/15623599.2023.2266676","DOIUrl":null,"url":null,"abstract":"Project managers often find it a challenge to successfully manage construction projects. As a result, understanding, evaluating, and achieving project success are critical for sponsors to control projects. In practice, determining key success factors and criteria to assess the performance of construction projects and forecast the success of new projects is difficult. To address these concerns, our objective is to go beyond the efficiency-oriented project success criteria by considering both efficiency- and effectiveness-oriented measures to evaluate project success. This paper contributes to existing knowledge by identifying a holistic and multidimensional set of project success factors and criteria using a two-round Delphi technique. We developed a decision support system using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast the success of mid- and large-sized construction projects. We gathered data from 142 project managers in Australia and New Zealand to implement the developed ANFIS. We then validated the constructed ANFIS using the K-fold cross-validation procedure and a real case study of a large construction project in Western Australia. The forecasting accuracy measures R2=0.97461, MAPE = 2.57912%, MAE = 1.88425, RMSE = 2.3610, RRMSE = 0.03149, and PI = 0.01589 suggest that the developed ANFIS is a very good predictor of project success.","PeriodicalId":47375,"journal":{"name":"International Journal of Construction Management","volume":"57 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Construction Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15623599.2023.2266676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Project managers often find it a challenge to successfully manage construction projects. As a result, understanding, evaluating, and achieving project success are critical for sponsors to control projects. In practice, determining key success factors and criteria to assess the performance of construction projects and forecast the success of new projects is difficult. To address these concerns, our objective is to go beyond the efficiency-oriented project success criteria by considering both efficiency- and effectiveness-oriented measures to evaluate project success. This paper contributes to existing knowledge by identifying a holistic and multidimensional set of project success factors and criteria using a two-round Delphi technique. We developed a decision support system using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast the success of mid- and large-sized construction projects. We gathered data from 142 project managers in Australia and New Zealand to implement the developed ANFIS. We then validated the constructed ANFIS using the K-fold cross-validation procedure and a real case study of a large construction project in Western Australia. The forecasting accuracy measures R2=0.97461, MAPE = 2.57912%, MAE = 1.88425, RMSE = 2.3610, RRMSE = 0.03149, and PI = 0.01589 suggest that the developed ANFIS is a very good predictor of project success.
期刊介绍:
The International Journal of Construction Management publishes quality papers aiming to advance the knowledge of construction management. The Journal is devoted to the publication of original research including, but not limited to the following: Sustainable Construction (Green building; Carbon emission; Waste management; Energy saving) Construction life cycle management Construction informatics (Building information modelling; Information communication technology; Virtual design and construction) Smart construction (Robotics; Artificial intelligence; 3D printing) Big data for construction Legal issues in construction Public policies for construction Building and Infrastructures Health, safety and well-being in construction Risk management in construction Disaster management and resilience Construction procurement Construction management education