The Effects of Different Carbon Sources on Water Quality, Growth Performance, Hematology, Immune, and Antioxidant Status in Cultured Nile Tilapia with Biofloc Technology
{"title":"The Effects of Different Carbon Sources on Water Quality, Growth Performance, Hematology, Immune, and Antioxidant Status in Cultured Nile Tilapia with Biofloc Technology","authors":"Khalid Hussain Rind, Syed Sikandar Habib, Javed Ahmed Ujan, Francesco Fazio, Saira Naz, Aima Iram Batool, Mujeeb Ullah, Sobia Attaullah, Khayyam Khayyam, Khalid Khan","doi":"10.3390/fishes8100512","DOIUrl":null,"url":null,"abstract":"The biofloc technology system (BFT) is considered to be one of the sustainable aquaculture systems, which is based on the principle of nutrient recycling with the addition of a carbon source to give dominance to heterotrophic microorganisms. The objective of this study was to evaluate the effect of sugar cane molasses and tapioca flour as carbon sources on the water quality, growth, hematology, immune status, and non-specific antioxidant status of Oreochromis juveniles. Methodologically, the experiment was carried out for 10 weeks on 225 juvenile Nile tilapia with initial body weights of 47.0 ± 1.3 g that were randomly distributed in 09 tanks (1000 L) with a stocking density of 25 tilapias per tank; the treatments were: BFT + SM (S molasses), BFT + TF tapioca flour (TF), and a control with no carbon source added. The control group was fed 100% feed, while the BFT experimental groups were fed microbial flocs along with 75% feed. The results revealed that the water quality parameters were affected by the carbon sources, but were adequate for normal fish welfare, and the biofloc volume was higher (28.94) with the TF carbon source. The growth performance, such as weight gain (98.61), survival (99.01), and improved feed conversion ratio (FCR) (1.69), was recorded in BFT + TF. Significant improvements in WBCs, HCT, HB, lymphocytes, plasma proteins, albumin, and non-specific immune factors (lysozyme activity, immunoglobulins levels, and ACH50) were observed in biofloc-reared fish with tapioca flour as the carbon source compared to the control and sugarcane molasses groups. Moreover, significant increases in catalase (CAT) and superoxide dismutase (SOD) were found in the biofloc-reared fish with different carbon sources. In conclusion, the use of BFT + TF was found to affect improving the water quality, growth, hematology, immunity, and antioxidant status of juvenile Tilapia.","PeriodicalId":12405,"journal":{"name":"Fishes","volume":"22 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fishes8100512","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 1
Abstract
The biofloc technology system (BFT) is considered to be one of the sustainable aquaculture systems, which is based on the principle of nutrient recycling with the addition of a carbon source to give dominance to heterotrophic microorganisms. The objective of this study was to evaluate the effect of sugar cane molasses and tapioca flour as carbon sources on the water quality, growth, hematology, immune status, and non-specific antioxidant status of Oreochromis juveniles. Methodologically, the experiment was carried out for 10 weeks on 225 juvenile Nile tilapia with initial body weights of 47.0 ± 1.3 g that were randomly distributed in 09 tanks (1000 L) with a stocking density of 25 tilapias per tank; the treatments were: BFT + SM (S molasses), BFT + TF tapioca flour (TF), and a control with no carbon source added. The control group was fed 100% feed, while the BFT experimental groups were fed microbial flocs along with 75% feed. The results revealed that the water quality parameters were affected by the carbon sources, but were adequate for normal fish welfare, and the biofloc volume was higher (28.94) with the TF carbon source. The growth performance, such as weight gain (98.61), survival (99.01), and improved feed conversion ratio (FCR) (1.69), was recorded in BFT + TF. Significant improvements in WBCs, HCT, HB, lymphocytes, plasma proteins, albumin, and non-specific immune factors (lysozyme activity, immunoglobulins levels, and ACH50) were observed in biofloc-reared fish with tapioca flour as the carbon source compared to the control and sugarcane molasses groups. Moreover, significant increases in catalase (CAT) and superoxide dismutase (SOD) were found in the biofloc-reared fish with different carbon sources. In conclusion, the use of BFT + TF was found to affect improving the water quality, growth, hematology, immunity, and antioxidant status of juvenile Tilapia.