Achromatic Number of Some Classes of Digraphs

IF 0.6 Q4 MATHEMATICS, APPLIED
S. M. Hegde, Lolita Priya Castelino
{"title":"Achromatic Number of Some Classes of Digraphs","authors":"S. M. Hegde, Lolita Priya Castelino","doi":"10.1142/s1793830923500908","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"364 13","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.
几类有向图的消色差数
设[公式:见文]是一个有向图,有[公式:见文]顶点和[公式:见文]圆弧。当且仅当对于[公式:见文本]的每个弧[公式:见文本],有序对[公式:见文本]至少出现一次时,一个函数[公式:见文本]被称为[公式:见文本]的完全着色。如果配对[公式:见文]未分配,则[公式:见文]称为[公式:见文]的[公式:见文][公式:见文][公式:见文][公式:见文]。[公式:见文]允许适当完全着色的最大值[公式:见文]称为[公式:见文]的[公式:见文][公式:见文],并用[公式:见文]表示。我们得到了有向图和正则有向图消色差数的上界,并研究了单径有向图、独轮车有向图、循环有向图等有向图的消色差数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信