{"title":"Radio Plateaus in Gamma-Ray Burst Afterglows and Their Application in Cosmology","authors":"Xiao Tian, Jia-Lun Li, Shuang-Xi Yi, Yu-Peng Yang, Jian-Ping Hu, Yan-Kun Qu, Fa-Yin Wang","doi":"10.3847/1538-4357/acfed8","DOIUrl":null,"url":null,"abstract":"Abstract The plateau phase in radio afterglows has been observed in very few gamma-ray bursts (GRBs), and in this paper, 27 radio light curves with plateau phases were acquired from the published literature. We obtain the related parameters of the radio plateau, such as temporal indexes during the plateau phase ( α 1 and α 2 ), break time ( T b,z ), and the corresponding radio flux ( F b ). The two-parameter Dainotti relation between the break time of the plateau and the corresponding break luminosity ( L b,z ) in the radio band is <?CDATA ${L}_{{\\rm{b}},{\\rm{z}}}\\propto {T}_{{\\rm{b}},{\\rm{z}}}^{-1.20\\pm 0.24}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.20</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.24</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> . Including the isotropic energy E γ ,iso and peak energy E p,i , the three-parameter correlations for the radio plateaus are written as <?CDATA ${L}_{{\\rm{b}},{\\rm{z}}}\\propto {T}_{{\\rm{b}},{\\rm{z}}}^{-1.01\\pm 0.24}{E}_{\\gamma ,\\mathrm{iso}}^{0.18\\pm 0.09}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.01</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.24</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>iso</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.18</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and <?CDATA ${L}_{{\\rm{b}},{\\rm{z}}}\\propto {T}_{{\\rm{b}},{\\rm{z}}}^{-1.18\\pm 0.27}{E}_{{\\rm{p}},{\\rm{i}}}^{0.05\\pm 0.28}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.18</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.27</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">p</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">i</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.05</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.28</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , respectively. The correlations are less consistent with those of the X-ray and optical plateaus, implying that radio plateaus may have a different physical mechanism. The typical frequencies crossing the observational band may be a reasonable hypothesis that causes the breaks of the radio afterglows. We calibrate the GRB empirical luminosity correlations as a standard candle for constraining cosmological parameters and find that our samples can constrain the flat ΛCDM model well but are not sensitive to the nonflat ΛCDM model. By combining GRBs with other probes, such as supernovae and the CMB, the constraints on the cosmological parameters are Ω m = 0.297 ± 0.006 for the flat ΛCDM model and Ω m = 0.283 ± 0.008, Ω Λ = 0.711 ± 0.006 for the nonflat ΛCDM model.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfed8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The plateau phase in radio afterglows has been observed in very few gamma-ray bursts (GRBs), and in this paper, 27 radio light curves with plateau phases were acquired from the published literature. We obtain the related parameters of the radio plateau, such as temporal indexes during the plateau phase ( α 1 and α 2 ), break time ( T b,z ), and the corresponding radio flux ( F b ). The two-parameter Dainotti relation between the break time of the plateau and the corresponding break luminosity ( L b,z ) in the radio band is Lb,z∝Tb,z−1.20±0.24 . Including the isotropic energy E γ ,iso and peak energy E p,i , the three-parameter correlations for the radio plateaus are written as Lb,z∝Tb,z−1.01±0.24Eγ,iso0.18±0.09 and Lb,z∝Tb,z−1.18±0.27Ep,i0.05±0.28 , respectively. The correlations are less consistent with those of the X-ray and optical plateaus, implying that radio plateaus may have a different physical mechanism. The typical frequencies crossing the observational band may be a reasonable hypothesis that causes the breaks of the radio afterglows. We calibrate the GRB empirical luminosity correlations as a standard candle for constraining cosmological parameters and find that our samples can constrain the flat ΛCDM model well but are not sensitive to the nonflat ΛCDM model. By combining GRBs with other probes, such as supernovae and the CMB, the constraints on the cosmological parameters are Ω m = 0.297 ± 0.006 for the flat ΛCDM model and Ω m = 0.283 ± 0.008, Ω Λ = 0.711 ± 0.006 for the nonflat ΛCDM model.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.