{"title":"Accurate Detection and Smoothness-Oriented Avoidance Method of Singularity in 5-Axis CNC Machining","authors":"Lei Wu , Jinting Xu , Hebing Xing , Yuwen Sun","doi":"10.1016/j.cad.2023.103652","DOIUrl":null,"url":null,"abstract":"<div><p>As an inherent flaw in the kinematic chain<span> mechanism of 5-axis machine tools, singularity can induce dramatic changes in machine axes motion and unfavorable fluctuations in feedrate. For effective singularity avoidance, it is desirable to first achieve accurate and efficient singularity detection and then eliminate the singularity without impairing tool orientation smoothness. This paper presents a novel approach for accurately detecting and smoothly avoiding the singularity in 5-axis CNC machining. In the detection method, two exclusion criteria are presented to efficiently exclude most non-singular segments of the tool orientation spline, and a curve intersection-based algorithm is thus developed to accurately identify the singular segments. In the singularity avoidance method, a concept of admissible tool orientation annulus (ATOA) is introduced, which serves to confine the range and magnitude of the tool orientation spline’s adjustments, and a local adjustment algorithm is then developed to enable the escape of the tool orientation from the singular region with controllable direction and deviation, while maintaining its continuity and smoothness. The effectiveness of singularity avoidance and the kinematic performance of the tool orientation modified by our method, are comparable to a state-of-the-art singularity avoidance algorithm. Finally, the conducted experiments validate the proposed method.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523001847","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As an inherent flaw in the kinematic chain mechanism of 5-axis machine tools, singularity can induce dramatic changes in machine axes motion and unfavorable fluctuations in feedrate. For effective singularity avoidance, it is desirable to first achieve accurate and efficient singularity detection and then eliminate the singularity without impairing tool orientation smoothness. This paper presents a novel approach for accurately detecting and smoothly avoiding the singularity in 5-axis CNC machining. In the detection method, two exclusion criteria are presented to efficiently exclude most non-singular segments of the tool orientation spline, and a curve intersection-based algorithm is thus developed to accurately identify the singular segments. In the singularity avoidance method, a concept of admissible tool orientation annulus (ATOA) is introduced, which serves to confine the range and magnitude of the tool orientation spline’s adjustments, and a local adjustment algorithm is then developed to enable the escape of the tool orientation from the singular region with controllable direction and deviation, while maintaining its continuity and smoothness. The effectiveness of singularity avoidance and the kinematic performance of the tool orientation modified by our method, are comparable to a state-of-the-art singularity avoidance algorithm. Finally, the conducted experiments validate the proposed method.