In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED
Maoyi Yi , Jie Li , Mengran Wang , Xinming Fan , Bo Hong , Zhian Zhang , Aonan Wang , Yanqing Lai
{"title":"In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries","authors":"Maoyi Yi ,&nbsp;Jie Li ,&nbsp;Mengran Wang ,&nbsp;Xinming Fan ,&nbsp;Bo Hong ,&nbsp;Zhian Zhang ,&nbsp;Aonan Wang ,&nbsp;Yanqing Lai","doi":"10.1016/j.jechem.2023.09.046","DOIUrl":null,"url":null,"abstract":"<div><p>The poor electrochemical performance of all-solid-state batteries (ASSBs), which is assemblied by Ni-rich cathode and poly(ethylene oxide) (PEO)-based electrolytes, can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode. Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode. However, these methods can hardly achieve simplicity and high efficiency simultaneously. In this work, polyacrylic acid (PAA) replaced traditional PVDF as a binder for cathode, which can achieve a uniform PAA-Li (Li<em><sub>x</sub></em>PAA (0 &lt; <em>x</em> ≤ 1)) coating layer on the surface of single-crystal LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> (SC-NCM83) due to H<sup>+</sup>/Li<sup>+</sup> exchange reaction during the initial charging-discharging process. The formation of PAA-Li coating layer on cathode can promote interfacial Li<sup>+</sup> transport and enhance the stability of the cathodic interface. Furthermore, the partially-protonated surface of SC-NCM83 casued by H<sup>+</sup>/Li<sup>+</sup> exchange reaction can restrict Ni ions transport to enhance the crystal structure stability. The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92% compared with that (57.3%) of SC-NCM83-polyvinylidene difluoride (PVDF) after 200 cycles. This work provides a practical strategy to construct high-performance cathodes for ASSBs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 137-143"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The poor electrochemical performance of all-solid-state batteries (ASSBs), which is assemblied by Ni-rich cathode and poly(ethylene oxide) (PEO)-based electrolytes, can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode. Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode. However, these methods can hardly achieve simplicity and high efficiency simultaneously. In this work, polyacrylic acid (PAA) replaced traditional PVDF as a binder for cathode, which can achieve a uniform PAA-Li (LixPAA (0 < x ≤ 1)) coating layer on the surface of single-crystal LiNi0.83Co0.12Mn0.05O2 (SC-NCM83) due to H+/Li+ exchange reaction during the initial charging-discharging process. The formation of PAA-Li coating layer on cathode can promote interfacial Li+ transport and enhance the stability of the cathodic interface. Furthermore, the partially-protonated surface of SC-NCM83 casued by H+/Li+ exchange reaction can restrict Ni ions transport to enhance the crystal structure stability. The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92% compared with that (57.3%) of SC-NCM83-polyvinylidene difluoride (PVDF) after 200 cycles. This work provides a practical strategy to construct high-performance cathodes for ASSBs.

Abstract Image

全固态电池中富镍单晶阴极的原位涂层和表面部分质子化共促进性能
由富镍阴极和聚环氧乙烷(PEO)基电解质组装而成的全固态电池(assb)电化学性能较差的原因是阴极界面不稳定和富镍阴极晶体结构稳定性差。为了提高富镍阴极的阴极界面和晶体结构的稳定性,已有几种不同的涂层策略。然而,这些方法很难同时实现简单和高效。在本研究中,聚丙烯酸(PAA)取代传统的PVDF作为阴极粘结剂,通过初始充放电过程中的H+/Li+交换反应,在单晶LiNi0.83Co0.12Mn0.05O2 (SC-NCM83)表面形成均匀的PAA-Li (LixPAA (0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信