Evaluation of adsorption potential of illite/quartz/kaolinite/montmorillonite for Cr(VI), Ni(II), and Cu(II) ions and modeling of experimental results by artificial neural networks

IF 1.6 Q3 WATER RESOURCES
Kavitha Balasubramani, D. Sarala Thambavani
{"title":"Evaluation of adsorption potential of illite/quartz/kaolinite/montmorillonite for Cr(VI), Ni(II), and Cu(II) ions and modeling of experimental results by artificial neural networks","authors":"Kavitha Balasubramani, D. Sarala Thambavani","doi":"10.2166/wpt.2023.134","DOIUrl":null,"url":null,"abstract":"Abstract An artificial neural network (ANN) was used to predict the removal efficiency of Cr(VI), Ni(II), and Cu(II) ions on riverbed sand containing illite/quartz/kaolinite/montmorillonite (IQKM) clay minerals. The effect of operational parameters such as initial metal ion concentration (10–100 mg/L), initial pH (2–10), adsorbent dosage (0.025–0.15 g/L), contact time (15–90 min), agitation speed (100–800 rpm), and temperature (303–323 K) is studied to optimize the conditions for greatest removal of metal ions. Employment of equilibrium isotherm models for the description of adsorption capacities for IQKM explored better efficiency of the Langmuir model for the best representation of experimental data with the highest adsorption capacity of 8.802, 7.5125, 6.608 mg/g for Cr(VI), Ni(II), and Cu(II) ions in the solution. The kinetics of the proposed adsorption processes efficiently followed pseudo-second-order and intraparticle diffusion kinetic models. .","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":"134 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2023.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract An artificial neural network (ANN) was used to predict the removal efficiency of Cr(VI), Ni(II), and Cu(II) ions on riverbed sand containing illite/quartz/kaolinite/montmorillonite (IQKM) clay minerals. The effect of operational parameters such as initial metal ion concentration (10–100 mg/L), initial pH (2–10), adsorbent dosage (0.025–0.15 g/L), contact time (15–90 min), agitation speed (100–800 rpm), and temperature (303–323 K) is studied to optimize the conditions for greatest removal of metal ions. Employment of equilibrium isotherm models for the description of adsorption capacities for IQKM explored better efficiency of the Langmuir model for the best representation of experimental data with the highest adsorption capacity of 8.802, 7.5125, 6.608 mg/g for Cr(VI), Ni(II), and Cu(II) ions in the solution. The kinetics of the proposed adsorption processes efficiently followed pseudo-second-order and intraparticle diffusion kinetic models. .
伊利石/石英/高岭石/蒙脱土对Cr(VI)、Ni(II)和Cu(II)离子的吸附电位评价及实验结果的人工神经网络建模
摘要采用人工神经网络(ANN)预测了含伊利石/石英/高岭石/蒙脱土(IQKM)粘土矿物河床砂对Cr(VI)、Ni(II)和Cu(II)离子的去除效果。考察了初始金属离子浓度(10 ~ 100 mg/L)、初始pH(2 ~ 10)、吸附剂用量(0.025 ~ 0.15 g/L)、接触时间(15 ~ 90 min)、搅拌速度(100 ~ 800 rpm)、温度(303 ~ 323 K)等操作参数对金属离子脱除效果的影响。利用平衡等温线模型来描述IQKM的吸附容量,探索了Langmuir模型的更好效率,以最佳地表示实验数据,溶液中Cr(VI), Ni(II)和Cu(II)离子的最高吸附容量分别为8.802,7.5125和6.608 mg/g。所提出的吸附过程的动力学有效地遵循伪二级和颗粒内扩散动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
6.20%
发文量
136
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信