Selective separability properties of Fréchet–Urysohn spaces and their products

Pub Date : 2023-01-01 DOI:10.4064/fm230522-13-10
Serhii Bardyla, Fortunato Maesano, Lyubomyr Zdomskyy
{"title":"Selective separability properties of Fréchet–Urysohn spaces and their products","authors":"Serhii Bardyla, Fortunato Maesano, Lyubomyr Zdomskyy","doi":"10.4064/fm230522-13-10","DOIUrl":null,"url":null,"abstract":"In this paper we study the behaviour of selective separability properties in the class of Frech\\'{e}t-Urysohn spaces. We present two examples, the first one given in ZFC proves the existence of a countable Frech\\'{e}t-Urysohn (hence $R$-separable and selectively separable) space which is not $H$-separable; assuming $\\mathfrak{p}=\\mathfrak{c}$, we construct such an example which is also zero-dimensional and $\\alpha_{4}$. Also, motivated by a result of Barman and Dow stating that the product of two countable Frech\\'{e}t-Urysohn spaces is $M$-separable under PFA, we show that the MA is not sufficient here. In the last section we prove that in the Laver model, the product of any two $H$-separable spaces is $mH$-separable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/fm230522-13-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the behaviour of selective separability properties in the class of Frech\'{e}t-Urysohn spaces. We present two examples, the first one given in ZFC proves the existence of a countable Frech\'{e}t-Urysohn (hence $R$-separable and selectively separable) space which is not $H$-separable; assuming $\mathfrak{p}=\mathfrak{c}$, we construct such an example which is also zero-dimensional and $\alpha_{4}$. Also, motivated by a result of Barman and Dow stating that the product of two countable Frech\'{e}t-Urysohn spaces is $M$-separable under PFA, we show that the MA is not sufficient here. In the last section we prove that in the Laver model, the product of any two $H$-separable spaces is $mH$-separable.
分享
查看原文
fr - urysohn空间及其积的选择性可分性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信