Zijun Zhao, Jianchao Zhu, Kaiming Yang, Song Wang, Mingxiao Zeng
{"title":"Data Processing of Municipal Wastewater Recycling Based on Genetic Algorithm","authors":"Zijun Zhao, Jianchao Zhu, Kaiming Yang, Song Wang, Mingxiao Zeng","doi":"10.31449/inf.v47i3.4038","DOIUrl":null,"url":null,"abstract":"In order to accurately process the data of urban sewage recycling, this paper designs an adaptive genetic algorithm, which integrates genetic algorithm, adaptive genetic algorithm and traditional PID respectively, and designs simulation experiments to compare their performance. The simulation results show that the self-adaptive PID control algorithm is superior to the genetic PID control algorithm in both control accuracy and dynamic characteristics. The PID controller with good optimization performance is applied to the control object of sewage treatment system. Through simulation analysis, the adaptive genetic algorithm only needs 52s when adjusting the step response simulation. The overshoot of the system is 8%. The interference in the simulation is restored to a stable state within the interference 18S, and the adjustment time in the robustness simulation is reduced by about 15s compared with the genetic algorithm. In conclusion, the adjustment time of the system is shortened, the overshoot of the system is reduced, and the anti-interference and robustness are enhanced. For the dissolved oxygen concentration of the key object in the control system, the above controller with good performance is applied to the sewage treatment control system, which not only reduces the overshoot and regulation time, but also improves the control accuracy, and can well meet the control requirements of sewage treatment.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"14 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i3.4038","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to accurately process the data of urban sewage recycling, this paper designs an adaptive genetic algorithm, which integrates genetic algorithm, adaptive genetic algorithm and traditional PID respectively, and designs simulation experiments to compare their performance. The simulation results show that the self-adaptive PID control algorithm is superior to the genetic PID control algorithm in both control accuracy and dynamic characteristics. The PID controller with good optimization performance is applied to the control object of sewage treatment system. Through simulation analysis, the adaptive genetic algorithm only needs 52s when adjusting the step response simulation. The overshoot of the system is 8%. The interference in the simulation is restored to a stable state within the interference 18S, and the adjustment time in the robustness simulation is reduced by about 15s compared with the genetic algorithm. In conclusion, the adjustment time of the system is shortened, the overshoot of the system is reduced, and the anti-interference and robustness are enhanced. For the dissolved oxygen concentration of the key object in the control system, the above controller with good performance is applied to the sewage treatment control system, which not only reduces the overshoot and regulation time, but also improves the control accuracy, and can well meet the control requirements of sewage treatment.
期刊介绍:
The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.