{"title":"A Vanka‐based parameter‐robust multigrid relaxation for the Stokes–Darcy Brinkman problems","authors":"Yunhui He","doi":"10.1002/nla.2514","DOIUrl":null,"url":null,"abstract":"Abstract We consider a block‐structured multigrid method based on Braess–Sarazin relaxation for solving the Stokes–Darcy Brinkman equations discretized by the marker and cell scheme. In the relaxation scheme, an element‐based additive Vanka operator is used to approximate the inverse of the corresponding shifted Laplacian operator involved in the discrete Stokes–Darcy Brinkman system. Using local Fourier analysis, we present the stencil for the additive Vanka smoother and derive an optimal smoothing factor for Vanka‐based Braess–Sarazin relaxation for the Stokes–Darcy Brinkman equations. Although the optimal damping parameter is dependent on meshsize and physical parameter, it is very close to one. In practice, we find that using three sweeps of Jacobi relaxation on the Schur complement system is sufficient. Numerical results of two‐grid and V(1,1)‐cycle are presented, which show high efficiency of the proposed relaxation scheme and its robustness to physical parameters and the meshsize. Using a damping parameter equal to one gives almost the same convergence results as these for the optimal damping parameter.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nla.2514","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider a block‐structured multigrid method based on Braess–Sarazin relaxation for solving the Stokes–Darcy Brinkman equations discretized by the marker and cell scheme. In the relaxation scheme, an element‐based additive Vanka operator is used to approximate the inverse of the corresponding shifted Laplacian operator involved in the discrete Stokes–Darcy Brinkman system. Using local Fourier analysis, we present the stencil for the additive Vanka smoother and derive an optimal smoothing factor for Vanka‐based Braess–Sarazin relaxation for the Stokes–Darcy Brinkman equations. Although the optimal damping parameter is dependent on meshsize and physical parameter, it is very close to one. In practice, we find that using three sweeps of Jacobi relaxation on the Schur complement system is sufficient. Numerical results of two‐grid and V(1,1)‐cycle are presented, which show high efficiency of the proposed relaxation scheme and its robustness to physical parameters and the meshsize. Using a damping parameter equal to one gives almost the same convergence results as these for the optimal damping parameter.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.