{"title":"Tourism demand forecasting using PCA-BPNN","authors":"","doi":"10.25236/ajcis.2023.060911","DOIUrl":null,"url":null,"abstract":"Accurate prediction of tourism demand is critically important for the efficient allocation of resources in scenic areas and managing sudden events. This paper presents a new tourism demand prediction model, PCA-BPNN neural network model. It utilizes Principal Component Analysis (PCA) to reduce the dimensionality of the collected Baidu Index data and mitigate overfitting issues. The model then constructs a backpropagation neural network (BPNN). Empirical research demonstrates that PCA-BPNN effectively identifies the nonlinear relationship between search keywords and the number of tourist arrivals and outperforms all benchmark models in terms of predictive performance.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.060911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of tourism demand is critically important for the efficient allocation of resources in scenic areas and managing sudden events. This paper presents a new tourism demand prediction model, PCA-BPNN neural network model. It utilizes Principal Component Analysis (PCA) to reduce the dimensionality of the collected Baidu Index data and mitigate overfitting issues. The model then constructs a backpropagation neural network (BPNN). Empirical research demonstrates that PCA-BPNN effectively identifies the nonlinear relationship between search keywords and the number of tourist arrivals and outperforms all benchmark models in terms of predictive performance.