Method of rectal tumor segmentation based on ResUnet++

{"title":"Method of rectal tumor segmentation based on ResUnet++","authors":"","doi":"10.25236/ajcis.2023.060801","DOIUrl":null,"url":null,"abstract":"Rectal cancer is one of the most common malignant tumors. Electronic cross section examination (CT) is used as a screening tool in the diagnosis of rectal cancer. The application of computer aided diagnosis technology to help doctors distinguish between benign and malignant tumors in rectal CT images is of great significance to guide further clinical treatment. In this paper, we analyze the performance of the current mainstream neural network models using the rectal tumor data set from the 7th Teddy Cup Data Mining Challenge B. Among them, ResUnet ++ achieves Dice value of 83.32% and IoU value of 70.06%, which is the best performance among mainstream models.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.060801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rectal cancer is one of the most common malignant tumors. Electronic cross section examination (CT) is used as a screening tool in the diagnosis of rectal cancer. The application of computer aided diagnosis technology to help doctors distinguish between benign and malignant tumors in rectal CT images is of great significance to guide further clinical treatment. In this paper, we analyze the performance of the current mainstream neural network models using the rectal tumor data set from the 7th Teddy Cup Data Mining Challenge B. Among them, ResUnet ++ achieves Dice value of 83.32% and IoU value of 70.06%, which is the best performance among mainstream models.
基于ResUnet++的直肠肿瘤分割方法
直肠癌是最常见的恶性肿瘤之一。电子断层检查(CT)是一种用于直肠癌诊断的筛查工具。应用计算机辅助诊断技术,帮助医生区分直肠CT图像上的良恶性肿瘤,对指导进一步的临床治疗具有重要意义。本文利用第七届泰迪杯数据挖掘挑战赛b的直肠肿瘤数据集,对当前主流神经网络模型的性能进行分析,其中ResUnet ++的Dice值达到83.32%,IoU值达到70.06%,是主流模型中性能最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信