An implementation of intelligent YOLOv3-based anomaly detection model from crowded video scenarios with optimized ensemble pattern extraction

Poorni Ramakrishnan, P. Madhavan
{"title":"An implementation of intelligent YOLOv3-based anomaly detection model from crowded video scenarios with optimized ensemble pattern extraction","authors":"Poorni Ramakrishnan, P. Madhavan","doi":"10.1080/13682199.2023.2255335","DOIUrl":null,"url":null,"abstract":"The anomaly or abnormality detection in crowded scenes helps in identifying the violence and protecting the people from severe damage. Thus, there is a need to detect the anomalies with the classifier for learning information along with the usage of huge architectures. A new anomaly detection model is implemented in this model. The collected data is fed to optimal ensemble pattern extraction scheme through techniques like Local binary patterns (LBP), Local Gradient Pattern (LGP), and Local Tetra Pattern (LTrP). The weights are tuned by a new hybrid Spiral Search-based Black Widow Glowworm Swarm Optimization (SS-BWGSO) for getting the optimal ensemble patterns. Next, anomaly frame classification is carried out by optimized VGG16+ResNet technique, where the hyperparameters of VGG16 and ResNet are tuned by SS-BWGSO algorithm. Finally, anomaly detection is performed by the YOLOV3 classifier. Throughout the result analysis the higher performance of the designed technique is observed over the classical methods.","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2255335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The anomaly or abnormality detection in crowded scenes helps in identifying the violence and protecting the people from severe damage. Thus, there is a need to detect the anomalies with the classifier for learning information along with the usage of huge architectures. A new anomaly detection model is implemented in this model. The collected data is fed to optimal ensemble pattern extraction scheme through techniques like Local binary patterns (LBP), Local Gradient Pattern (LGP), and Local Tetra Pattern (LTrP). The weights are tuned by a new hybrid Spiral Search-based Black Widow Glowworm Swarm Optimization (SS-BWGSO) for getting the optimal ensemble patterns. Next, anomaly frame classification is carried out by optimized VGG16+ResNet technique, where the hyperparameters of VGG16 and ResNet are tuned by SS-BWGSO algorithm. Finally, anomaly detection is performed by the YOLOV3 classifier. Throughout the result analysis the higher performance of the designed technique is observed over the classical methods.
基于yolov3的拥挤视频场景智能异常检测模型的优化集成模式提取
在拥挤的场景中发现异常或异常有助于识别暴力行为,保护人们免受严重伤害。因此,随着庞大体系结构的使用,需要使用分类器来检测异常以学习信息。在此模型中实现了一种新的异常检测模型。通过局部二值模式(LBP)、局部梯度模式(LGP)和局部利乐模式(LTrP)等技术,将采集到的数据馈送到最优的集成模式提取方案中。采用一种新的基于混合螺旋搜索的黑寡妇萤火虫群优化算法(SS-BWGSO)对权重进行调整,以获得最优的集合模式。其次,采用优化后的VGG16+ResNet技术进行异常帧分类,其中VGG16和ResNet的超参数采用SS-BWGSO算法进行调优。最后,由YOLOV3分类器进行异常检测。结果分析表明,所设计的方法比传统方法具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信