Intelligent Resource Allocation Using an Artificial Ecosystem Optimizer with Deep Learning on UAV Networks

IF 4.4 2区 地球科学 Q1 REMOTE SENSING
Drones Pub Date : 2023-10-03 DOI:10.3390/drones7100619
Ahsan Rafiq, Reem Alkanhel, Mohammed Saleh Ali Muthanna, Evgeny Mokrov, Ahmed Aziz, Ammar Muthanna
{"title":"Intelligent Resource Allocation Using an Artificial Ecosystem Optimizer with Deep Learning on UAV Networks","authors":"Ahsan Rafiq, Reem Alkanhel, Mohammed Saleh Ali Muthanna, Evgeny Mokrov, Ahmed Aziz, Ammar Muthanna","doi":"10.3390/drones7100619","DOIUrl":null,"url":null,"abstract":"An Unmanned Aerial Vehicle (UAV)-based cellular network over a millimeter wave (mmWave) frequency band addresses the necessities of flexible coverage and high data rate in the next-generation network. But, the use of a wide range of antennas and higher propagation loss in mmWave networks results in high power utilization and UAVs are limited by low-capacity onboard batteries. To cut down the energy cost of UAV-aided mmWave networks, Energy Harvesting (EH) is a promising solution. But, it is a challenge to sustain strong connectivity in UAV-based terrestrial cellular networks due to the random nature of renewable energy. With this motivation, this article introduces an intelligent resource allocation using an artificial ecosystem optimizer with a deep learning (IRA-AEODL) technique on UAV networks. The presented IRA-AEODL technique aims to effectually allot the resources in wireless UAV networks. In this case, the IRA-AEODL technique focuses on the maximization of system utility over all users, combined user association, energy scheduling, and trajectory design. To optimally allocate the UAV policies, the stacked sparse autoencoder (SSAE) model is used in the UAV networks. For the hyperparameter tuning process, the AEO algorithm is used for enhancing the performance of the SSAE model. The experimental results of the IRA-AEODL technique are examined under different aspects and the outcomes stated the improved performance of the IRA-AEODL approach over recent state of art approaches.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"41 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100619","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

An Unmanned Aerial Vehicle (UAV)-based cellular network over a millimeter wave (mmWave) frequency band addresses the necessities of flexible coverage and high data rate in the next-generation network. But, the use of a wide range of antennas and higher propagation loss in mmWave networks results in high power utilization and UAVs are limited by low-capacity onboard batteries. To cut down the energy cost of UAV-aided mmWave networks, Energy Harvesting (EH) is a promising solution. But, it is a challenge to sustain strong connectivity in UAV-based terrestrial cellular networks due to the random nature of renewable energy. With this motivation, this article introduces an intelligent resource allocation using an artificial ecosystem optimizer with a deep learning (IRA-AEODL) technique on UAV networks. The presented IRA-AEODL technique aims to effectually allot the resources in wireless UAV networks. In this case, the IRA-AEODL technique focuses on the maximization of system utility over all users, combined user association, energy scheduling, and trajectory design. To optimally allocate the UAV policies, the stacked sparse autoencoder (SSAE) model is used in the UAV networks. For the hyperparameter tuning process, the AEO algorithm is used for enhancing the performance of the SSAE model. The experimental results of the IRA-AEODL technique are examined under different aspects and the outcomes stated the improved performance of the IRA-AEODL approach over recent state of art approaches.
基于深度学习的无人机网络人工生态优化器的智能资源分配
基于无人机(UAV)的毫米波(mmWave)频段蜂窝网络解决了下一代网络中灵活覆盖和高数据速率的需求。但是,在毫米波网络中使用大范围的天线和更高的传播损耗会导致高功率利用率,并且无人机受到低容量机载电池的限制。为了降低无人机辅助毫米波网络的能源成本,能量收集(EH)是一个很有前途的解决方案。但是,由于可再生能源的随机性,在基于无人机的地面蜂窝网络中保持强大的连通性是一个挑战。基于这一动机,本文介绍了在无人机网络上使用具有深度学习(IRA-AEODL)技术的人工生态系统优化器的智能资源分配。提出的IRA-AEODL技术旨在有效地分配无线无人机网络中的资源。在这种情况下,IRA-AEODL技术侧重于所有用户的系统效用最大化、组合用户关联、能源调度和轨迹设计。为了优化无人机策略的分配,在无人机网络中采用了堆叠稀疏自编码器(SSAE)模型。在超参数整定过程中,采用了AEO算法来提高SSAE模型的性能。从不同的方面对IRA-AEODL技术的实验结果进行了检查,结果表明IRA-AEODL方法的性能优于当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信