{"title":"Multiplicative Characters and Gaussian Fluctuation Limits","authors":"Ryosuke Sato","doi":"10.3842/sigma.2023.072","DOIUrl":null,"url":null,"abstract":"It is known that extreme characters of several inductive limits of compact groups exhibit multiplicativity in a certain sense. In the paper, we formulate such multiplicativity for inductive limit quantum groups and provide explicit examples of multiplicative characters in the case of quantum unitary groups. Furthermore, we show a Gaussian fluctuation limit theorem using this concept of multiplicativity.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.072","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that extreme characters of several inductive limits of compact groups exhibit multiplicativity in a certain sense. In the paper, we formulate such multiplicativity for inductive limit quantum groups and provide explicit examples of multiplicative characters in the case of quantum unitary groups. Furthermore, we show a Gaussian fluctuation limit theorem using this concept of multiplicativity.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.