Identification of Possible Estimates Areas for Parameters of Fully connected Linear Regression Models

M.P. Bazilevskiy
{"title":"Identification of Possible Estimates Areas for Parameters of Fully connected Linear Regression Models","authors":"M.P. Bazilevskiy","doi":"10.17759/mda.2023130304","DOIUrl":null,"url":null,"abstract":"<p>This article is devoted to the study of fully connected linear regression models, in which the observed variables contain errors, and the pairs of true variables are interconnected by linear functional dependencies. When estimating fully connected regressions, the main problem is the correct choice of the error variances ratios of the variables. If the choice is made incorrectly, then the fully connected regression estimates will be biased. The purpose of this article is to find the dependence of main parameters possible estimates areas on the possible error variances ratios of the variables in fully connected regressions. For the first time, with the help of matrix algebra elements, the inverse problem is solved - analytical dependences of the error variances ratios of variables on the main parameters are obtained. These dependences make it possible to identify the parameters possible estimates areas in which the necessary condition for the extremum of the objective function is satisfied. It is proved that, under certain conditions, for any error variances ratios of the variables, the parameters estimates always lie inside an open convex polygon located only in one of the orthants of the multidimensional space. In this case, the signs of the estimates always agree with the signs of the corresponding correlation coefficients. A numerical experiment was carried out, confirming the correctness of the results obtained.</p>","PeriodicalId":498071,"journal":{"name":"Modelirovanie i analiz dannyh","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelirovanie i analiz dannyh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17759/mda.2023130304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to the study of fully connected linear regression models, in which the observed variables contain errors, and the pairs of true variables are interconnected by linear functional dependencies. When estimating fully connected regressions, the main problem is the correct choice of the error variances ratios of the variables. If the choice is made incorrectly, then the fully connected regression estimates will be biased. The purpose of this article is to find the dependence of main parameters possible estimates areas on the possible error variances ratios of the variables in fully connected regressions. For the first time, with the help of matrix algebra elements, the inverse problem is solved - analytical dependences of the error variances ratios of variables on the main parameters are obtained. These dependences make it possible to identify the parameters possible estimates areas in which the necessary condition for the extremum of the objective function is satisfied. It is proved that, under certain conditions, for any error variances ratios of the variables, the parameters estimates always lie inside an open convex polygon located only in one of the orthants of the multidimensional space. In this case, the signs of the estimates always agree with the signs of the corresponding correlation coefficients. A numerical experiment was carried out, confirming the correctness of the results obtained.

全连通线性回归模型参数可能估计区域的识别
本文致力于研究全连通线性回归模型,其中观测变量包含误差,真变量对通过线性函数依赖关系相互连接。在估计全连通回归时,主要问题是正确选择变量的误差方差比。如果选择不正确,那么完全连接的回归估计将是有偏差的。本文的目的是找出全连通回归中主要参数可能估计区域对变量可能误差方差比的依赖关系。首次利用矩阵代数元求解了反问题,得到了各变量误差方差比与主要参数的解析依赖关系。这些依赖关系使我们有可能识别出满足目标函数极值的必要条件的参数可能估计区域。证明了在一定条件下,对于变量的任何误差方差比,参数估计总是在只位于多维空间的一个正交角的开凸多边形内。在这种情况下,估计的符号总是与相应的相关系数的符号一致。进行了数值实验,验证了所得结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信