NON-ISOMORPHIC SMOOTH COMPACTIFICATIONS OF THE MODULI SPACE OF CUBIC SURFACES

Pub Date : 2023-10-03 DOI:10.1017/nmj.2023.27
SEBASTIAN CASALAINA-MARTIN, SAMUEL GRUSHEVSKY, KLAUS HULEK, RADU LAZA
{"title":"NON-ISOMORPHIC SMOOTH COMPACTIFICATIONS OF THE MODULI SPACE OF CUBIC SURFACES","authors":"SEBASTIAN CASALAINA-MARTIN, SAMUEL GRUSHEVSKY, KLAUS HULEK, RADU LAZA","doi":"10.1017/nmj.2023.27","DOIUrl":null,"url":null,"abstract":"Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient ${\\mathcal {M}}^{\\operatorname {GIT}}$ , as a Baily–Borel compactification of a ball quotient ${(\\mathcal {B}_4/\\Gamma )^*}$ , and as a compactified K -moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup ${\\mathcal {M}}^{\\operatorname {K}}\\rightarrow {\\mathcal {M}}^{\\operatorname {GIT}}$ , whereas from the ball quotient point of view, it is natural to consider the toroidal compactification ${\\overline {\\mathcal {B}_4/\\Gamma }}\\rightarrow {(\\mathcal {B}_4/\\Gamma )^*}$ . The spaces ${\\mathcal {M}}^{\\operatorname {K}}$ and ${\\overline {\\mathcal {B}_4/\\Gamma }}$ have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in fact not the case. Indeed, we show the more refined statement that ${\\mathcal {M}}^{\\operatorname {K}}$ and ${\\overline {\\mathcal {B}_4/\\Gamma }}$ are equivalent in the Grothendieck ring, but not K -equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nmj.2023.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient ${\mathcal {M}}^{\operatorname {GIT}}$ , as a Baily–Borel compactification of a ball quotient ${(\mathcal {B}_4/\Gamma )^*}$ , and as a compactified K -moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup ${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$ , whereas from the ball quotient point of view, it is natural to consider the toroidal compactification ${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$ . The spaces ${\mathcal {M}}^{\operatorname {K}}$ and ${\overline {\mathcal {B}_4/\Gamma }}$ have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in fact not the case. Indeed, we show the more refined statement that ${\mathcal {M}}^{\operatorname {K}}$ and ${\overline {\mathcal {B}_4/\Gamma }}$ are equivalent in the Grothendieck ring, but not K -equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.
分享
查看原文
三次曲面模空间的非同构光滑紧化
复杂三次曲面的模空间有三种不同但同构的紧化实现:作为GIT商${\mathcal {M}}^{\operatorname {GIT}}$,作为球商的Baily-Borel紧化${(\mathcal {B}_4/\Gamma )^*}$,以及作为紧化K模空间。从这三个角度来看,存在一个与非稳定曲面相对应的唯一边界点。从GIT的角度来看,要处理这一点,很自然地考虑Kirwan爆破${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$,而从球商的角度来看,很自然地考虑环面紧化${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$。空间${\mathcal {M}}^{\operatorname {K}}$和${\overline {\mathcal {B}_4/\Gamma }}$具有相同的上同调,因此很自然地要问它们是否同构。在这里,我们证明事实并非如此。事实上,我们给出了一个更精确的表述,即${\mathcal {M}}^{\operatorname {K}}$和${\overline {\mathcal {B}_4/\Gamma }}$在格罗滕迪克环中是等价的,但不是K等价的。在此过程中,我们建立了一些处理奇异性和正则类的结果和技术,以及球商的环面紧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信