{"title":"Misinformation Detection Using Deep Learning","authors":"Michail Tsikerdekis, Sherali Zeadally","doi":"10.1109/mitp.2023.3314752","DOIUrl":null,"url":null,"abstract":"In recent years, we have witnessed growing interest in using deep learning to detect misinformation. This increased attention is being driven by deep learning technologies’ ability to accurately detect this misinformation. However, there is a diverse array of content that can be considered misinformation, such as fake news and satire. Similarly, in the field of deep learning, there are several architectures with variable efficacy depending on the context and data involved. This study aims to highlight the various types of misinformation attacks and deep learning architectures that are used to detect them. Based on our selection of the recent literature, we present a classification of deep learning approaches and their relative effectiveness in detecting misinformation, along with their limitations in terms of accuracy as well as computational overhead. Finally, we discuss some challenges and limitations that arise FROM the use of deep learning architectures in misinformation detection.","PeriodicalId":49045,"journal":{"name":"IT Professional","volume":"356 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT Professional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mitp.2023.3314752","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, we have witnessed growing interest in using deep learning to detect misinformation. This increased attention is being driven by deep learning technologies’ ability to accurately detect this misinformation. However, there is a diverse array of content that can be considered misinformation, such as fake news and satire. Similarly, in the field of deep learning, there are several architectures with variable efficacy depending on the context and data involved. This study aims to highlight the various types of misinformation attacks and deep learning architectures that are used to detect them. Based on our selection of the recent literature, we present a classification of deep learning approaches and their relative effectiveness in detecting misinformation, along with their limitations in terms of accuracy as well as computational overhead. Finally, we discuss some challenges and limitations that arise FROM the use of deep learning architectures in misinformation detection.
IT ProfessionalCOMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
5.00
自引率
0.00%
发文量
111
审稿时长
>12 weeks
期刊介绍:
IT Professional is a technical magazine of the IEEE Computer Society. It publishes peer-reviewed articles, columns and departments written for and by IT practitioners and researchers covering:
practical aspects of emerging and leading-edge digital technologies,
original ideas and guidance for IT applications, and
novel IT solutions for the enterprise.
IT Professional’s goal is to inform the broad spectrum of IT executives, IT project managers, IT researchers, and IT application developers from industry, government, and academia.