Normal Extensions

IF 1 Q1 MATHEMATICS
Christoph Schwarzweller
{"title":"Normal Extensions","authors":"Christoph Schwarzweller","doi":"10.2478/forma-2023-0011","DOIUrl":null,"url":null,"abstract":"Summary In this article we continue the formalization of field theory in Mizar [1], [2], [4], [3]. We introduce normal extensions: an (algebraic) extension E of F is normal if every polynomial of F that has a root in E already splits in E . We proved characterizations (for finite extensions) by minimal polynomials [7], splitting fields, and fixing monomorphisms [6], [5]. This required extending results from [11] and [12], in particular that F [ T ] = { p ( a 1 , . . . a n ) | p ∈ F [ X ], a i ∈ T } and F ( T ) = F [ T ] for finite algebraic T ⊆ E . We also provided the counterexample that 𝒬(∛2) is not normal over 𝒬 (compare [13]).","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"15 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary In this article we continue the formalization of field theory in Mizar [1], [2], [4], [3]. We introduce normal extensions: an (algebraic) extension E of F is normal if every polynomial of F that has a root in E already splits in E . We proved characterizations (for finite extensions) by minimal polynomials [7], splitting fields, and fixing monomorphisms [6], [5]. This required extending results from [11] and [12], in particular that F [ T ] = { p ( a 1 , . . . a n ) | p ∈ F [ X ], a i ∈ T } and F ( T ) = F [ T ] for finite algebraic T ⊆ E . We also provided the counterexample that 𝒬(∛2) is not normal over 𝒬 (compare [13]).
正常的扩展
在本文中,我们继续Mizar[1],[2],[4],[3]中场论的形式化。我们引入正规扩展:如果F的每个多项式在E中有一个根已经在E中分裂,那么F的(代数)扩展E是正规的。我们通过极小多项式[7]、分裂域和固定单态[6]、[5]证明了表征(有限扩展)。这需要扩展[11]和[12]的结果,特别是F [T] = {p (a 1,…)。an) | p∈F [X], ai∈T}, F (T) = F [T]我们还提供了反例,𝒬(∛2)在𝒬上不正常(比较[13])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信