{"title":"Role of Synthetic Data for Improved AI Accuracy","authors":"None Ketha Dhana Veera Chaitanya, None Manas Kumar Yogi","doi":"10.36548/jaicn.2023.3.008","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) has emerged as a transformative technology across various industries, enabling advanced applications such as image recognition, natural language processing, and autonomous systems. A critical determinant of AI model performance is the quality and quantity of training data used during the model's development. However, acquiring and labeling large datasets for training can be resource-intensive, time-consuming, and privacy-sensitive. Synthetic data has emerged as a promising solution to address these challenges and enhance AI accuracy. This study explores the role of synthetic data in improving AI accuracy. Synthetic data refers to artificially generated data that mimics the distribution and characteristics of real-world data. By leveraging techniques from computer graphics, data augmentation, and generative modeling, researchers and practitioners can create diverse and representative synthetic datasets that supplement or replace traditional training data.","PeriodicalId":500183,"journal":{"name":"Journal of Artificial Intelligence and Copsule Networks","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Copsule Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jaicn.2023.3.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) has emerged as a transformative technology across various industries, enabling advanced applications such as image recognition, natural language processing, and autonomous systems. A critical determinant of AI model performance is the quality and quantity of training data used during the model's development. However, acquiring and labeling large datasets for training can be resource-intensive, time-consuming, and privacy-sensitive. Synthetic data has emerged as a promising solution to address these challenges and enhance AI accuracy. This study explores the role of synthetic data in improving AI accuracy. Synthetic data refers to artificially generated data that mimics the distribution and characteristics of real-world data. By leveraging techniques from computer graphics, data augmentation, and generative modeling, researchers and practitioners can create diverse and representative synthetic datasets that supplement or replace traditional training data.