Internal Direct Products and the Universal Property of Direct Product Groups

IF 1 Q1 MATHEMATICS
Alexander M. Nelson
{"title":"Internal Direct Products and the Universal Property of Direct Product Groups","authors":"Alexander M. Nelson","doi":"10.2478/forma-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract This is a “quality of life” article concerning product groups, using the Mizar system [2], [4]. Like a Sonata, this article consists of three movements. The first act, the slowest of the three, builds the infrastructure necessary for the rest of the article. We prove group homomorphisms map arbitrary finite products to arbitrary finite products, introduce a notion of “group yielding” families, as well as families of homomorphisms. We close the first act with defining the inclusion morphism of a subgroup into its parent group, and the projection morphism of a product group onto one of its factors. The second act introduces the universal property of products and its consequences as found in, e.g., Kurosh [7]. Specifically, for the product of an arbitrary family of groups, we prove the center of a product group is the product of centers. More exciting, we prove for a product of a finite family groups, the commutator subgroup of the product is the product of commutator subgroups, but this is because in general: the direct sum of commutator subgroups is the subgroup of the commutator subgroup of the product group, and the commutator subgroup of the product is a subgroup of the product of derived subgroups. We conclude this act by proving a few theorems concerning the image and kernel of morphisms between product groups, as found in Hungerford [5], as well as quotients of product groups. The third act introduces the notion of an internal direct product. Isaacs [6] points out (paraphrasing with Mizar terminology) that the internal direct product is a predicate but the external direct product is a [Mizar] functor. To our delight, we find the bulk of the “recognition theorem” (as stated by Dummit and Foote [3], Aschbacher [1], and Robinson [11]) are already formalized in the heroic work of Nakasho, Okazaki, Yamazaki, and Shimada [9], [8]. We generalize the notion of an internal product to a set of subgroups, proving it is equivalent to the internal product of a family of subgroups [10].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This is a “quality of life” article concerning product groups, using the Mizar system [2], [4]. Like a Sonata, this article consists of three movements. The first act, the slowest of the three, builds the infrastructure necessary for the rest of the article. We prove group homomorphisms map arbitrary finite products to arbitrary finite products, introduce a notion of “group yielding” families, as well as families of homomorphisms. We close the first act with defining the inclusion morphism of a subgroup into its parent group, and the projection morphism of a product group onto one of its factors. The second act introduces the universal property of products and its consequences as found in, e.g., Kurosh [7]. Specifically, for the product of an arbitrary family of groups, we prove the center of a product group is the product of centers. More exciting, we prove for a product of a finite family groups, the commutator subgroup of the product is the product of commutator subgroups, but this is because in general: the direct sum of commutator subgroups is the subgroup of the commutator subgroup of the product group, and the commutator subgroup of the product is a subgroup of the product of derived subgroups. We conclude this act by proving a few theorems concerning the image and kernel of morphisms between product groups, as found in Hungerford [5], as well as quotients of product groups. The third act introduces the notion of an internal direct product. Isaacs [6] points out (paraphrasing with Mizar terminology) that the internal direct product is a predicate but the external direct product is a [Mizar] functor. To our delight, we find the bulk of the “recognition theorem” (as stated by Dummit and Foote [3], Aschbacher [1], and Robinson [11]) are already formalized in the heroic work of Nakasho, Okazaki, Yamazaki, and Shimada [9], [8]. We generalize the notion of an internal product to a set of subgroups, proving it is equivalent to the internal product of a family of subgroups [10].
内部直接积与直接积群的全称性质
这是一篇关于产品组的“生活质量”文章,使用了Mizar系统[2],[4]。像奏鸣曲一样,这篇文章由三个乐章组成。第一个步骤是三个步骤中最慢的,它构建了本文其余部分所需的基础结构。证明了群同态映射任意有限积到任意有限积,引入了“群屈服”族的概念,以及同态族的概念。我们用定义子群到它的父群的包含态射和乘积群到它的一个因子的投影态射来结束第一步。第二部分介绍了产品的普遍属性及其结果,例如Kurosh[7]。具体地说,对于任意群族的积,证明了积群的中心是中心的积。更令人兴奋的是,我们证明了对于有限族群的乘积,乘积的交换子群是交换子群的乘积,但这是因为一般来说:交换子群的直和是乘积群的交换子群的子群,而乘积的交换子群是派生子群的乘积的子群。我们通过证明Hungerford[5]中关于乘积群之间态射的象和核的几个定理,以及乘积群的商,来总结这一行为。第三幕介绍了内部直接产品的概念。Isaacs[6]指出(用Mizar术语改写),内部直接积是一个谓词,而外部直接积是一个[Mizar]函子。令我们高兴的是,我们发现大部分“识别定理”(如Dummit和Foote[3]、Aschbacher[1]和Robinson[11]所述)已经在中正、冈崎、山崎和岛田[9]、[8]的英雄著作中形式化了。我们将内积的概念推广到子群的集合,证明了它等价于一组子群的内积[10]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信