{"title":"Geotechnical Interpretation of the Geological Structure of Loess Covers in Lublin Region","authors":"Krzysztof Nepelski","doi":"10.2478/acee-2023-0037","DOIUrl":null,"url":null,"abstract":"Abstract The characteristic feature of the geological structure in the Lublin Region is loess covers, which at the same time constitute the main subsoil for setting building structures. Geological structure is the basis for developing a geotechnical model of the subsoil, which may be identical to the geological model. However, these two types of models in many cases should differ, because the geotechnical model is developed depending on the type of structure, its dimensions, the method and depth of the foundation, and the loads transferred. Identifying geological layers only on the basis of lithology and subsoil state leads to significant and excessive simplification, especially when these layers occur at different depths. Soil stiffness and its bearing capacity depend not only on the state, i.e. wetness but also on several other factors which are difficult to identify based on a superficial macroscopic assessment, even with the verification of individual samples with laboratory tests. A good foundation for the geotechnical assessment of the subsoil is provided by in situ tests such as CPTU and DMT, which allow for a statistical evaluation of parameters. The work presents the methodology for creating a geotechnical model of the loess subsoil based on in situ tests.","PeriodicalId":8117,"journal":{"name":"Architecture Civil Engineering Environment","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architecture Civil Engineering Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acee-2023-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The characteristic feature of the geological structure in the Lublin Region is loess covers, which at the same time constitute the main subsoil for setting building structures. Geological structure is the basis for developing a geotechnical model of the subsoil, which may be identical to the geological model. However, these two types of models in many cases should differ, because the geotechnical model is developed depending on the type of structure, its dimensions, the method and depth of the foundation, and the loads transferred. Identifying geological layers only on the basis of lithology and subsoil state leads to significant and excessive simplification, especially when these layers occur at different depths. Soil stiffness and its bearing capacity depend not only on the state, i.e. wetness but also on several other factors which are difficult to identify based on a superficial macroscopic assessment, even with the verification of individual samples with laboratory tests. A good foundation for the geotechnical assessment of the subsoil is provided by in situ tests such as CPTU and DMT, which allow for a statistical evaluation of parameters. The work presents the methodology for creating a geotechnical model of the loess subsoil based on in situ tests.