Christian Westphal, Jens Brimmers, Christian Brecher
{"title":"Influence of axis misalignments in stepped planetary gear stages on the excitation behavior—test rig development and simulative analysis","authors":"Christian Westphal, Jens Brimmers, Christian Brecher","doi":"10.1007/s10010-023-00709-z","DOIUrl":null,"url":null,"abstract":"Abstract One challenge in the design of automotive gearboxes is the combination of high power density, high efficiency and low noise emission. With the electrification of the powertrain, the requirements in terms of noise emission and efficiency increase additionally. Stepped planetary gear stages are a potential topology to solve the current challenges in gearbox technology. Current research shows the pronounced misalignment behavior of planetary gear stages, especially with manufacturing or assembly deviations. However, the effects of dynamic misalignment behavior on tooth contacts in stepped planetary gear stages have not been adequately investigated. This paper presents a test rig that allows the investigation of the excitation and displacement behavior of stepped planetary gear stages taking into account adjustable axis misalignments. The axis misalignment of the stepped planetary shafts is introduced with eccentric bushings in this test rig concept. To evaluate the excitation and displacement behavior the transmission error and the displacements of different components can be measured. The test rig is modeled in the dynamic multibody simulation. The tooth contact is modeled using the force module GearForce6D. The axis misalignment is varied in the simulation model and the influence on the excitation and displacement behavior is evaluated. The simulation results show that planet pin position errors have the highest influence on the sun trajectory and the load sharing. The misalignments occurring in the tooth contacts due to inclination and skew of the stepped planetary shaft lead to higher tooth flank pressures and an increase in the total transmission error.","PeriodicalId":50431,"journal":{"name":"Forschung Im Ingenieurwesen-Engineering Research","volume":"18 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forschung Im Ingenieurwesen-Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10010-023-00709-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract One challenge in the design of automotive gearboxes is the combination of high power density, high efficiency and low noise emission. With the electrification of the powertrain, the requirements in terms of noise emission and efficiency increase additionally. Stepped planetary gear stages are a potential topology to solve the current challenges in gearbox technology. Current research shows the pronounced misalignment behavior of planetary gear stages, especially with manufacturing or assembly deviations. However, the effects of dynamic misalignment behavior on tooth contacts in stepped planetary gear stages have not been adequately investigated. This paper presents a test rig that allows the investigation of the excitation and displacement behavior of stepped planetary gear stages taking into account adjustable axis misalignments. The axis misalignment of the stepped planetary shafts is introduced with eccentric bushings in this test rig concept. To evaluate the excitation and displacement behavior the transmission error and the displacements of different components can be measured. The test rig is modeled in the dynamic multibody simulation. The tooth contact is modeled using the force module GearForce6D. The axis misalignment is varied in the simulation model and the influence on the excitation and displacement behavior is evaluated. The simulation results show that planet pin position errors have the highest influence on the sun trajectory and the load sharing. The misalignments occurring in the tooth contacts due to inclination and skew of the stepped planetary shaft lead to higher tooth flank pressures and an increase in the total transmission error.
期刊介绍:
This journal is aimed at those who require an interdisciplinary overview of current research in fundamental areas of engineering science as well as outstanding contributions in their own field. It intends to encourage an exchange of ideas between the areas of research and development. Submissions are subject to regular peer review by independent experts. Mainly contributions in German from all disciplines of engineering and technology will be considered for evaluation and publication.