{"title":"Computable approximations of a chainable continuum with a computable endpoint","authors":"Zvonko Iljazović, Matea Jelić","doi":"10.1007/s00153-023-00891-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that a semicomputable continuum <i>S</i> in a computable topological space can be approximated by a computable subcontinuum by any given precision under condition that <i>S</i> is chainable and decomposable. In this paper we show that decomposability can be replaced by the assumption that <i>S</i> is chainable from <i>a</i> to <i>b</i>, where <i>a</i> is a computable point.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00891-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that a semicomputable continuum S in a computable topological space can be approximated by a computable subcontinuum by any given precision under condition that S is chainable and decomposable. In this paper we show that decomposability can be replaced by the assumption that S is chainable from a to b, where a is a computable point.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.