The scaling limit of the weakly self-avoiding walk on a high-dimensional torus

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Emmanuel Michta
{"title":"The scaling limit of the weakly self-avoiding walk on a high-dimensional torus","authors":"Emmanuel Michta","doi":"10.1214/23-ecp531","DOIUrl":null,"url":null,"abstract":"We prove that the scaling limit of the weakly self-avoiding walk on a d-dimensional discrete torus is Brownian motion on the continuum torus if the length of the rescaled walk is o(V1∕2) where V is the volume (number of points) of the torus and if d>4. We also prove that the diffusion constant of the resulting torus Brownian motion is the same as the diffusion constant of the scaling limit of the usual weakly self-avoiding walk on Zd. This provides further manifestation of the fact that the weakly self-avoiding walk model on the torus does not feel that it is on the torus up until it reaches about V1∕2 steps, which we believe is sharp.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"18 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp531","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We prove that the scaling limit of the weakly self-avoiding walk on a d-dimensional discrete torus is Brownian motion on the continuum torus if the length of the rescaled walk is o(V1∕2) where V is the volume (number of points) of the torus and if d>4. We also prove that the diffusion constant of the resulting torus Brownian motion is the same as the diffusion constant of the scaling limit of the usual weakly self-avoiding walk on Zd. This provides further manifestation of the fact that the weakly self-avoiding walk model on the torus does not feel that it is on the torus up until it reaches about V1∕2 steps, which we believe is sharp.
高维环面上弱自避行走的尺度极限
证明了d维离散环面上弱自回避行走的缩放极限是连续体环面上的布朗运动,当缩放后的行走长度为0 (V1∕2),其中V为环面上的体积(点数),且d为>4。我们还证明了所得到的环面布朗运动的扩散常数与通常在Zd上弱自避行走的尺度极限的扩散常数相同。这进一步证明了环面上弱自避行走模型直到到达V1 / 2步时才感觉自己在环面上,我们认为这是明显的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信