Generating a tunable narrow electron beam comb via laser-driven plasma grating

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hetian Yang, Jingwei Wang, Shixia Luan, Ke Feng, Wentao Wang, Ruxin Li
{"title":"Generating a tunable narrow electron beam comb via laser-driven plasma grating","authors":"Hetian Yang, Jingwei Wang, Shixia Luan, Ke Feng, Wentao Wang, Ruxin Li","doi":"10.1063/5.0151883","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for generating a high-density, spatially periodic narrow electron beam comb (EBC) from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma. We employ particle-in-cell (PIC) simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma. This overlap results in the formation of a transverse standing wave, leading to a spatially periodic high-density modulation known as a plasma grating. The electron density peak within the grating can reach several times the background plasma density. The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons, resulting in Coulomb expansion and acceleration of the electrons. As a result, some electrons expand into vacuum, forming a periodic narrow EBC with an individual beam width in the nanoscale range. To further explore the formation of the nanoscale EBC, we conduct additional PIC simulations to study the dependence on various laser parameters. Overall, our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"24 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0151883","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel approach for generating a high-density, spatially periodic narrow electron beam comb (EBC) from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma. We employ particle-in-cell (PIC) simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma. This overlap results in the formation of a transverse standing wave, leading to a spatially periodic high-density modulation known as a plasma grating. The electron density peak within the grating can reach several times the background plasma density. The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons, resulting in Coulomb expansion and acceleration of the electrons. As a result, some electrons expand into vacuum, forming a periodic narrow EBC with an individual beam width in the nanoscale range. To further explore the formation of the nanoscale EBC, we conduct additional PIC simulations to study the dependence on various laser parameters. Overall, our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.
通过激光驱动等离子体光栅产生可调谐窄电子束梳
本文提出了一种在亚临界密度等离子体中由两个强激光脉冲的干涉诱导等离子体光栅产生高密度、空间周期性窄电子束梳的新方法。我们采用粒子池(PIC)模拟来研究具有特定角度重叠的交叉传播激光脉冲在亚临界等离子体中的影响。这种重叠导致横向驻波的形成,导致空间周期性高密度调制称为等离子光栅。光栅内的电子密度峰值可达到背景等离子体密度的数倍。电子密度峰中电子与离子的电荷不平衡导致电子之间的相互排斥,导致电子的库仑膨胀和加速。结果,一些电子膨胀到真空中,形成一个周期性的窄EBC,其单个光束宽度在纳米级范围内。为了进一步探索纳米尺度EBC的形成,我们进行了额外的PIC模拟来研究不同激光参数对EBC的依赖。总的来说,我们提出的方法提供了一种有前途的和可控的方法来生成可调谐的高密度窄EBCs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信