Alakesh Das, Dikshita Deka, Nabajyoti Baildya, Antara Banerjee, Atil Bisgin, Suman Adhikari, Asim K. Duttaroy, Surajit Pathak
{"title":"BMAP-27 Peptide Reduces Proliferation and Increases Apoptosis in Primary and Metastatic Colon Cancer Cell Lines","authors":"Alakesh Das, Dikshita Deka, Nabajyoti Baildya, Antara Banerjee, Atil Bisgin, Suman Adhikari, Asim K. Duttaroy, Surajit Pathak","doi":"10.1007/s10989-023-10572-9","DOIUrl":null,"url":null,"abstract":"Abstract BMAP-27 peptide is reported to possess apoptotic and anti-proliferative effects against cancer cells but the actual mechanism of action is yet to be investigated. In the current investigation, we aimed to study the role of the BMAP-27 peptide in reducing proliferation and increasing apoptosis in colon cancer cell lines. In this study, we used primary and metastatic colon cancer cell lines SW480 and SW620. Cell proliferation was measured using MTT and CCK-8 assays, and cellular damage was analyzed by lactate dehydrogenase assay. Apoptosis, cell cycle, and proliferation potentials were measured by the expression of CASPASE3, BAX, BCL-2, TP53, CDK-6, PCNA, WNT11, AXIN1 , and CTNNB1 genes. Additionally, in-silico studies were conducted to determine the binding affinities of BMAP-27 with adenomatous polyposis coli (APC) and β-catenin proteins, one of the primary regulators of colon cancer. BMAP-27 peptide reduced colon cancer cell proliferation, upregulated tumor suppressor genes CASPASE3, BAX, TP53, AXIN1 expression, and downregulated the expression of oncogenes BCL-2, CDK-6, PCNA, WNT11, CTNNB1 in both the cell lines, however, in the primary colon cancer cell line the changes are found to be more significant. The molecular dynamic simulation analysis revealed substantial binding affinity of the peptide to APC and β-catenin proteins. BMAP-27 peptide significantly inhibited the proliferation and induced apoptosis in the primary colon cancer cell line than in the metastatic colon cancer cell line. In-silico results suggest that BMAP-27 shows a strong binding affinity with APC and β-catenin proteins, highlighting its role in inhibiting colon cancer cell proliferation.","PeriodicalId":14217,"journal":{"name":"International Journal of Peptide Research and Therapeutics","volume":"92 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptide Research and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10989-023-10572-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract BMAP-27 peptide is reported to possess apoptotic and anti-proliferative effects against cancer cells but the actual mechanism of action is yet to be investigated. In the current investigation, we aimed to study the role of the BMAP-27 peptide in reducing proliferation and increasing apoptosis in colon cancer cell lines. In this study, we used primary and metastatic colon cancer cell lines SW480 and SW620. Cell proliferation was measured using MTT and CCK-8 assays, and cellular damage was analyzed by lactate dehydrogenase assay. Apoptosis, cell cycle, and proliferation potentials were measured by the expression of CASPASE3, BAX, BCL-2, TP53, CDK-6, PCNA, WNT11, AXIN1 , and CTNNB1 genes. Additionally, in-silico studies were conducted to determine the binding affinities of BMAP-27 with adenomatous polyposis coli (APC) and β-catenin proteins, one of the primary regulators of colon cancer. BMAP-27 peptide reduced colon cancer cell proliferation, upregulated tumor suppressor genes CASPASE3, BAX, TP53, AXIN1 expression, and downregulated the expression of oncogenes BCL-2, CDK-6, PCNA, WNT11, CTNNB1 in both the cell lines, however, in the primary colon cancer cell line the changes are found to be more significant. The molecular dynamic simulation analysis revealed substantial binding affinity of the peptide to APC and β-catenin proteins. BMAP-27 peptide significantly inhibited the proliferation and induced apoptosis in the primary colon cancer cell line than in the metastatic colon cancer cell line. In-silico results suggest that BMAP-27 shows a strong binding affinity with APC and β-catenin proteins, highlighting its role in inhibiting colon cancer cell proliferation.
期刊介绍:
The International Journal for Peptide Research & Therapeutics is an international, peer-reviewed journal focusing on issues, research, and integration of knowledge on the latest developments in peptide therapeutics. The Journal brings together in a single source the most exciting work in peptide research, including isolation, structural characterization, synthesis and biological activity of peptides, and thereby aids in the development of unifying concepts from diverse perspectives. The Journal invites substantial contributions in the following thematic areas:
-New advances in peptide drug delivery systems.
-Application of peptide therapeutics to specific diseases.
-New advances in synthetic methods.
-The development of new procedures for construction of peptide libraries and methodology for screening of such mixtures.
-The use of peptides in the study of enzyme specificity and mechanism, receptor binding and antibody/antigen interactions
-Applications of such techniques as chromatography, electrophoresis, NMR and X-ray crystallography, mass spectrometry.