New approach of evaluating fracturing interference based on wellhead pressure monitoring data: a case study from the well group-A of Fuling shale gas field
Liu Li, Tang YaWan, Zheng Aiwei, Zhang Qian, Wang Yimin, Cai Jin
{"title":"New approach of evaluating fracturing interference based on wellhead pressure monitoring data: a case study from the well group-A of Fuling shale gas field","authors":"Liu Li, Tang YaWan, Zheng Aiwei, Zhang Qian, Wang Yimin, Cai Jin","doi":"10.1007/s13202-023-01713-3","DOIUrl":null,"url":null,"abstract":"Abstract Well pattern infilling has become an effective means for improving the development effect of gas reservoirs in unconventional gas reservoirs. The hydraulic fracturing of infill wells causes widespread fracturing interference between new and old wells. Because fracturing interference has a significant influence on the production of old wells, it is urgent to evaluate the degree of fracturing interference. This paper proposes a new approach to evaluating fracturing interference between new and old wells, which is based on a systematic analysis of the variation pattern of old well wellhead fracturing during the fracturing process of new wells. This new approach not only provides a semi-quantitative evaluation for the degree of fracturing interference between fracture sections of new and old wells but also achieves inter-well connectivity evaluation between new and old wells. This new approach is applied in well group A of the Fuling gas field to demonstrate its analysis process. The results show the different types of fracturing interference result in different levels of pressure response between each fracturing section and the old wells. For example, The pressure rise of old well A7-1 is more obvious in the fracturing process of the 2nd, 14th, and 13th sections of new well A68-5, and the old well A7-2 has significant fracturing interference with the 1st, 2nd, 3rd, 4th, and 6th sections. This achieves a semi-quantitative characterization of fracturing interference between new and old wells. The degree of fracturing interference between the old well A7-2 and the new well A68-5 is the strongest in well group A, which is the effect of compression fracture interference. The old wells A7-3 and A15-3 are the least impacted by fracturing interference, and follow the old wells A15-2 and A7-1. This result has implications for assessing the degree of fracturing interference and inter-well connectivity in unconventional gas reservoirs.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"30 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01713-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Well pattern infilling has become an effective means for improving the development effect of gas reservoirs in unconventional gas reservoirs. The hydraulic fracturing of infill wells causes widespread fracturing interference between new and old wells. Because fracturing interference has a significant influence on the production of old wells, it is urgent to evaluate the degree of fracturing interference. This paper proposes a new approach to evaluating fracturing interference between new and old wells, which is based on a systematic analysis of the variation pattern of old well wellhead fracturing during the fracturing process of new wells. This new approach not only provides a semi-quantitative evaluation for the degree of fracturing interference between fracture sections of new and old wells but also achieves inter-well connectivity evaluation between new and old wells. This new approach is applied in well group A of the Fuling gas field to demonstrate its analysis process. The results show the different types of fracturing interference result in different levels of pressure response between each fracturing section and the old wells. For example, The pressure rise of old well A7-1 is more obvious in the fracturing process of the 2nd, 14th, and 13th sections of new well A68-5, and the old well A7-2 has significant fracturing interference with the 1st, 2nd, 3rd, 4th, and 6th sections. This achieves a semi-quantitative characterization of fracturing interference between new and old wells. The degree of fracturing interference between the old well A7-2 and the new well A68-5 is the strongest in well group A, which is the effect of compression fracture interference. The old wells A7-3 and A15-3 are the least impacted by fracturing interference, and follow the old wells A15-2 and A7-1. This result has implications for assessing the degree of fracturing interference and inter-well connectivity in unconventional gas reservoirs.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies