High-order spectral collocation method using tempered fractional Sturm–Liouville eigenproblems

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED
Sayed A. Dahy, H. M. El-Hawary, Alaa Fahim, Tarek Aboelenen
{"title":"High-order spectral collocation method using tempered fractional Sturm–Liouville eigenproblems","authors":"Sayed A. Dahy, H. M. El-Hawary, Alaa Fahim, Tarek Aboelenen","doi":"10.1007/s40314-023-02475-8","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an accurate exponential tempered fractional spectral collocation method (TFSCM) to solve one-dimensional and time-dependent tempered fractional partial differential equations (TFPDEs). We use a family of tempered fractional Sturm–Liouville eigenproblems (TFSLP) as a basis and the fractional Lagrange interpolants (FLIs) that generally satisfy the Kronecker delta (KD) function at the employed collocation points. Firstly, we drive the corresponding tempered fractional differentiation matrices (TFDMs). Then, we treat with various linear and nonlinear TFPDEs, among them, the space-tempered fractional advection and diffusion problem, the time-space tempered fractional advection–diffusion problem (TFADP), the multi-term time-space tempered fractional problems, and the time-space tempered fractional Burgers’ equation (TFBE) to investigate the numerical capability of the fractional collocation method. The study includes a numerical examination of the produced condition number $$\\kappa (A)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>κ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of the linear systems. The accuracy and efficiency of the proposed method are studied from the standpoint of the $$L^\\infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> -norm error and exponential rate of spectral convergence.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-023-02475-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents an accurate exponential tempered fractional spectral collocation method (TFSCM) to solve one-dimensional and time-dependent tempered fractional partial differential equations (TFPDEs). We use a family of tempered fractional Sturm–Liouville eigenproblems (TFSLP) as a basis and the fractional Lagrange interpolants (FLIs) that generally satisfy the Kronecker delta (KD) function at the employed collocation points. Firstly, we drive the corresponding tempered fractional differentiation matrices (TFDMs). Then, we treat with various linear and nonlinear TFPDEs, among them, the space-tempered fractional advection and diffusion problem, the time-space tempered fractional advection–diffusion problem (TFADP), the multi-term time-space tempered fractional problems, and the time-space tempered fractional Burgers’ equation (TFBE) to investigate the numerical capability of the fractional collocation method. The study includes a numerical examination of the produced condition number $$\kappa (A)$$ κ ( A ) of the linear systems. The accuracy and efficiency of the proposed method are studied from the standpoint of the $$L^\infty $$ L -norm error and exponential rate of spectral convergence.

Abstract Image

基于调质分数Sturm-Liouville特征问题的高阶谱配置方法
提出了一种精确的指数调质分数阶谱配置方法,用于求解一维时变调质分数阶偏微分方程(TFPDEs)。我们使用一组缓和分数Sturm-Liouville特征问题(TFSLP)作为基础,并使用分数拉格朗日插值(fli),这些插值通常在所使用的配点处满足Kronecker delta (KD)函数。首先,我们驱动相应的缓变分数微分矩阵(tfdm)。然后,我们处理了各种线性和非线性TFPDEs,其中包括空间回火分数阶平流扩散问题、时空回火分数阶平流扩散问题(TFADP)、多项时空回火分数阶问题和时空回火分数阶Burgers方程(TFBE),研究了分数阶配置方法的数值性能。研究包括对线性系统产生的条件数$$\kappa (A)$$ κ (a)的数值检验。从$$L^\infty $$ L∞范数误差和谱收敛指数速率的角度研究了该方法的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信