EVALUATING MONOCULAR DEPTH ESTIMATION METHODS

Q2 Social Sciences
N. Padkan, P. Trybala, R. Battisti, F. Remondino, C. Bergeret
{"title":"EVALUATING MONOCULAR DEPTH ESTIMATION METHODS","authors":"N. Padkan, P. Trybala, R. Battisti, F. Remondino, C. Bergeret","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-137-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments using ground truth data, including 3D analyses and inference time.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-137-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments using ground truth data, including 3D analyses and inference time.
评价单目深度估计方法
摘要单眼图像深度估计已成为摄影测量和计算机视觉研究的热点。单目深度估计(MDE)涉及从单个RGB图像确定深度,具有许多优点,包括在同步定位和地图(SLAM),场景理解,3D建模,机器人和自动驾驶中的应用。在立体图像、光流或点云等其他来源不可用的情况下,深度信息检索变得尤为重要。与传统的立体或多视图方法相比,MDE技术需要更少的计算资源和更小的数据集。本研究工作对一些最先进的MDE方法进行了全面的分析和评估,考虑到它们在陆地图像中推断深度信息的能力。评估包括使用地面真实数据的定量评估,包括3D分析和推理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信