Morawetz’s contributions to the mathematical theory of transonic flows, shock waves, and partial differential equations of mixed type

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gui-Qiang Chen
{"title":"Morawetz’s contributions to the mathematical theory of transonic flows, shock waves, and partial differential equations of mixed type","authors":"Gui-Qiang Chen","doi":"10.1090/bull/1816","DOIUrl":null,"url":null,"abstract":"This article is a survey of Cathleen Morawetz’s contributions to the mathematical theory of transonic flows, shock waves, and partial differential equations of mixed elliptic-hyperbolic type. The main focus is on Morawetz’s fundamental work on the nonexistence of continuous transonic flows past profiles, Morawetz’s program regarding the construction of global steady weak transonic flow solutions past profiles via compensated compactness, and a potential theory for regular and Mach reflection of a shock at a wedge. The profound impact of Morawetz’s work on recent developments and breakthroughs in these research directions and related areas in pure and applied mathematics are also discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This article is a survey of Cathleen Morawetz’s contributions to the mathematical theory of transonic flows, shock waves, and partial differential equations of mixed elliptic-hyperbolic type. The main focus is on Morawetz’s fundamental work on the nonexistence of continuous transonic flows past profiles, Morawetz’s program regarding the construction of global steady weak transonic flow solutions past profiles via compensated compactness, and a potential theory for regular and Mach reflection of a shock at a wedge. The profound impact of Morawetz’s work on recent developments and breakthroughs in these research directions and related areas in pure and applied mathematics are also discussed.
莫拉维兹对跨音速流动、激波和混合型偏微分方程的数学理论的贡献
本文综述了kathleen Morawetz在跨音速流动、激波和混合椭圆-双曲型偏微分方程数学理论方面的贡献。主要的焦点是Morawetz关于不存在连续跨声速流过剖面的基本工作,Morawetz关于通过补偿紧性构造全局稳定弱跨声速流过剖面的方案,以及楔形激波的规则反射和马赫反射的潜在理论。本文还讨论了Morawetz的工作对这些研究方向和相关领域在纯数学和应用数学中的最新发展和突破的深刻影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信