A NEW DATASET AND METHODOLOGY FOR URBAN-SCALE 3D POINT CLOUD CLASSIFICATION

Q2 Social Sciences
O. C. Bayrak, F. Remondino, M. Uzar
{"title":"A NEW DATASET AND METHODOLOGY FOR URBAN-SCALE 3D POINT CLOUD CLASSIFICATION","authors":"O. C. Bayrak, F. Remondino, M. Uzar","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-1-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Urban landscapes are characterized by a multitude of diverse objects, each bearing unique significance in urban management and development. With the rapid evolution and deployment of Unmanned Aerial Vehicle (UAV) technologies, the 3D surveying of urban areas through high resolution point clouds and orthoimages has become more feasible. This technological leap enhances our capacity to comprehensively capture and analyze urban spaces. This contribution introduces a new urban dataset, called YTU3D, which covers an area of approximately 2 km2 and encompasses 45 distinct classes. Notably, YTU3D exceeds the class diversity of existing datasets, thereby enhancing its suitability for detailed urban analysis tasks. The paper presents also the application of three popular deep learning methods in the context of 3D semantic segmentation, along with a multi-level multi-resolution (MLMR) integration. Significantly, our work marks the first application of deep learning with MLMR in the literature and shows that a MLMR approach can improve the classification accuracy. The YTU3D dataset and research findings are publicly available at https://github.com/3DOM-FBK/YTU3D.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-1-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Urban landscapes are characterized by a multitude of diverse objects, each bearing unique significance in urban management and development. With the rapid evolution and deployment of Unmanned Aerial Vehicle (UAV) technologies, the 3D surveying of urban areas through high resolution point clouds and orthoimages has become more feasible. This technological leap enhances our capacity to comprehensively capture and analyze urban spaces. This contribution introduces a new urban dataset, called YTU3D, which covers an area of approximately 2 km2 and encompasses 45 distinct classes. Notably, YTU3D exceeds the class diversity of existing datasets, thereby enhancing its suitability for detailed urban analysis tasks. The paper presents also the application of three popular deep learning methods in the context of 3D semantic segmentation, along with a multi-level multi-resolution (MLMR) integration. Significantly, our work marks the first application of deep learning with MLMR in the literature and shows that a MLMR approach can improve the classification accuracy. The YTU3D dataset and research findings are publicly available at https://github.com/3DOM-FBK/YTU3D.
一种新的城市尺度三维点云分类数据集和方法
摘要城市景观的特点是众多不同的对象,每个对象在城市管理和发展中都具有独特的意义。随着无人机(UAV)技术的快速发展和部署,利用高分辨率点云和正射影像对城市区域进行三维测量变得更加可行。这一技术飞跃提高了我们全面捕捉和分析城市空间的能力。这一贡献介绍了一个新的城市数据集,称为YTU3D,它覆盖了大约2平方公里的面积,包括45个不同的类别。值得注意的是,YTU3D超越了现有数据集的类别多样性,从而增强了其对详细城市分析任务的适用性。本文还介绍了三种流行的深度学习方法在三维语义分割中的应用,以及多层次多分辨率(MLMR)集成。值得注意的是,我们的工作标志着深度学习与MLMR在文献中的首次应用,并表明MLMR方法可以提高分类精度。YTU3D数据集和研究成果可在https://github.com/3DOM-FBK/YTU3D上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信