Genetic algorithm for feature selection in mammograms for breast masses classification

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
None G Vaira Suganthi, None J Sutha, None M Parvathy, N Muthamil Selvi
{"title":"Genetic algorithm for feature selection in mammograms for breast masses classification","authors":"None G Vaira Suganthi, None J Sutha, None M Parvathy, N Muthamil Selvi","doi":"10.1080/21681163.2023.2266031","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2023.2266031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.
遗传算法在乳腺肿块分类中的特征选择
摘要本文介绍了一种计算机辅助检测(CAD)系统,用于将DDSM数据库中乳腺x线照片中的肿块分类为良性、恶性或正常。CAD过程包括预处理、分割、特征提取、特征选择和分类。采用遗传算法(GA)、t检验和粒子群优化(PSO)三种特征选择方法。在分类阶段,探索了三种机器学习算法(kNN、multiSVM和朴素贝叶斯)。诸如准确度、AUC、精密度、召回率、f1分数、MCC、Dice系数和Jaccard系数等评估指标用于性能评估。对这三个类别的训练和测试准确性进行了评估。使用9种算法组合对系统进行评估,产生以下AUC值:GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM(0.85)和PSO+NB(0.86)。研究表明,遗传算法和kNN组合优于其他组合。关键词:乳房x光检查乳房肿块特征选择遗传算法披露声明作者未报告潜在利益冲突。附加信息资金没有使用资金来完成这个项目。关于贡献者G Vaira SuganthiDr的说明。Vaira Suganthi G有20年的教学经验。她感兴趣的领域包括图像处理和机器学习。J SuthaDr。Sutha J有超过25年的教学经验。她感兴趣的领域包括图像处理和机器学习。M ParvathyDr。Parvathy M有20多年的教学经验。她感兴趣的领域包括图像处理、数据挖掘和机器学习。N·穆萨米尔·塞尔维姆斯。Muthamil Selvi N有1年的教学经验。她感兴趣的领域是机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.20%
发文量
102
期刊介绍: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信