3D DENSITY-GRADIENT BASED EDGE DETECTION ON NEURAL RADIANCE FIELDS (NERFS) FOR GEOMETRIC RECONSTRUCTION

Q2 Social Sciences
M. Jäger, B. Jutzi
{"title":"3D DENSITY-GRADIENT BASED EDGE DETECTION ON NEURAL RADIANCE FIELDS (NERFS) FOR GEOMETRIC RECONSTRUCTION","authors":"M. Jäger, B. Jutzi","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-71-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Generating geometric 3D reconstructions from Neural Radiance Fields (NeRFs) is of great interest. However, accurate and complete reconstructions based on the density values are challenging. The network output depends on input data, NeRF network configuration and hyperparameter. As a result, the direct usage of density values, e.g. via filtering with global density thresholds, usually requires empirical investigations. Under the assumption that the density increases from non-object to object area, the utilization of density gradients from relative values is evident. As the density represents a position-dependent parameter it can be handled anisotropically, therefore processing of the voxelized 3D density field is justified. In this regard, we address geometric 3D reconstructions based on density gradients, whereas the gradients result from 3D edge detection filters of the first and second derivatives, namely Sobel, Canny and Laplacian of Gaussian. The gradients rely on relative neighboring density values in all directions, thus are independent from absolute magnitudes. Consequently, gradient filters are able to extract edges along a wide density range, almost independent from assumptions and empirical investigations. Our approach demonstrates the capability to achieve geometric 3D reconstructions with high geometric accuracy on object surfaces and remarkable object completeness. Notably, Canny filter effectively eliminates gaps, delivers a uniform point density, and strikes a favorable balance between correctness and completeness across the scenes.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-71-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Generating geometric 3D reconstructions from Neural Radiance Fields (NeRFs) is of great interest. However, accurate and complete reconstructions based on the density values are challenging. The network output depends on input data, NeRF network configuration and hyperparameter. As a result, the direct usage of density values, e.g. via filtering with global density thresholds, usually requires empirical investigations. Under the assumption that the density increases from non-object to object area, the utilization of density gradients from relative values is evident. As the density represents a position-dependent parameter it can be handled anisotropically, therefore processing of the voxelized 3D density field is justified. In this regard, we address geometric 3D reconstructions based on density gradients, whereas the gradients result from 3D edge detection filters of the first and second derivatives, namely Sobel, Canny and Laplacian of Gaussian. The gradients rely on relative neighboring density values in all directions, thus are independent from absolute magnitudes. Consequently, gradient filters are able to extract edges along a wide density range, almost independent from assumptions and empirical investigations. Our approach demonstrates the capability to achieve geometric 3D reconstructions with high geometric accuracy on object surfaces and remarkable object completeness. Notably, Canny filter effectively eliminates gaps, delivers a uniform point density, and strikes a favorable balance between correctness and completeness across the scenes.
基于神经辐射场(nerfs)的三维密度梯度边缘检测
摘要从神经辐射场(nerf)生成几何三维重建是一个非常有趣的问题。然而,基于密度值的精确和完整的重建是具有挑战性的。网络输出取决于输入数据、NeRF网络配置和超参数。因此,直接使用密度值,例如通过全局密度阈值过滤,通常需要经验调查。在假设密度从非目标区域到目标区域增加的情况下,密度梯度从相对值的利用是明显的。由于密度代表一个位置相关的参数,它可以进行各向异性处理,因此体素化三维密度场的处理是合理的。在这方面,我们解决了基于密度梯度的几何三维重建,而梯度来自一阶导数和二阶导数的三维边缘检测滤波器,即高斯的Sobel, Canny和Laplacian。梯度依赖于所有方向上相对相邻的密度值,因此与绝对震级无关。因此,梯度滤波器能够沿宽密度范围提取边缘,几乎独立于假设和经验调查。我们的方法证明了在物体表面实现几何三维重建的能力,具有很高的几何精度和显著的物体完整性。值得注意的是,Canny过滤器有效地消除了间隙,提供了均匀的点密度,并在场景的正确性和完整性之间取得了良好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信