{"title":"An infinite-dimensional non-linear equation related to gibbs measures of a sos model","authors":"U. A. Rozikov","doi":"10.1142/s0219025723500261","DOIUrl":null,"url":null,"abstract":"For the solid-on-solid (SOS) model with an external field and with spin values from the set of all integers on a Cayley tree, each (gradient) Gibbs measure corresponds to a boundary law (an infinite-dimensional vector function defined on vertices of the Cayley tree) satisfying a nonlinear functional equation. Recently some translation-invariant and height-periodic (non-normalizable) solutions to the equation are found. Here, our aim is to find non-height-periodic and non-normalizable boundary laws for the SOS model. By such a solution one can construct a non-probability Gibbs measure. We find explicitly several non-normalizable boundary laws. Moreover, we reduce the problem to solving of a nonlinear, second-order difference equation. We give analytic and numerical analyses of the difference equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219025723500261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For the solid-on-solid (SOS) model with an external field and with spin values from the set of all integers on a Cayley tree, each (gradient) Gibbs measure corresponds to a boundary law (an infinite-dimensional vector function defined on vertices of the Cayley tree) satisfying a nonlinear functional equation. Recently some translation-invariant and height-periodic (non-normalizable) solutions to the equation are found. Here, our aim is to find non-height-periodic and non-normalizable boundary laws for the SOS model. By such a solution one can construct a non-probability Gibbs measure. We find explicitly several non-normalizable boundary laws. Moreover, we reduce the problem to solving of a nonlinear, second-order difference equation. We give analytic and numerical analyses of the difference equation.