An infinite-dimensional non-linear equation related to gibbs measures of a sos model

Pub Date : 2023-11-04 DOI:10.1142/s0219025723500261
U. A. Rozikov
{"title":"An infinite-dimensional non-linear equation related to gibbs measures of a sos model","authors":"U. A. Rozikov","doi":"10.1142/s0219025723500261","DOIUrl":null,"url":null,"abstract":"For the solid-on-solid (SOS) model with an external field and with spin values from the set of all integers on a Cayley tree, each (gradient) Gibbs measure corresponds to a boundary law (an infinite-dimensional vector function defined on vertices of the Cayley tree) satisfying a nonlinear functional equation. Recently some translation-invariant and height-periodic (non-normalizable) solutions to the equation are found. Here, our aim is to find non-height-periodic and non-normalizable boundary laws for the SOS model. By such a solution one can construct a non-probability Gibbs measure. We find explicitly several non-normalizable boundary laws. Moreover, we reduce the problem to solving of a nonlinear, second-order difference equation. We give analytic and numerical analyses of the difference equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219025723500261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the solid-on-solid (SOS) model with an external field and with spin values from the set of all integers on a Cayley tree, each (gradient) Gibbs measure corresponds to a boundary law (an infinite-dimensional vector function defined on vertices of the Cayley tree) satisfying a nonlinear functional equation. Recently some translation-invariant and height-periodic (non-normalizable) solutions to the equation are found. Here, our aim is to find non-height-periodic and non-normalizable boundary laws for the SOS model. By such a solution one can construct a non-probability Gibbs measure. We find explicitly several non-normalizable boundary laws. Moreover, we reduce the problem to solving of a nonlinear, second-order difference equation. We give analytic and numerical analyses of the difference equation.
分享
查看原文
一个与sos模型的吉布斯测度有关的无限维非线性方程
对于具有外场且自旋值来自Cayley树上所有整数集合的solid-on-solid (SOS)模型,每个(梯度)Gibbs测度对应于满足非线性泛函数方程的边界律(在Cayley树的顶点上定义的无限维向量函数)。最近发现了该方程的平移不变解和高度周期(不可归一化)解。在这里,我们的目标是找到非高度周期和不可归一化的SOS模型的边界律。通过这样的解,我们可以构造一个非概率吉布斯测度。我们明确地发现了几个不可归一化的边界律。此外,我们将问题简化为求解一个非线性二阶差分方程。对差分方程进行了解析和数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信