A. Rahimi, A. Ghasemzadeh, B. Daraby, Firdous A. Shah
{"title":"Quantum Detection Problem for Fusion Frames","authors":"A. Rahimi, A. Ghasemzadeh, B. Daraby, Firdous A. Shah","doi":"10.1142/s0219887824500671","DOIUrl":null,"url":null,"abstract":"A quantum injective frame is a frame whose measurements for density operators can be used as a distinguishing feature in a quantum system, and the frame quantum detection problem demands a characterization of all such frames. Very recently, the quantum detection problem for continuous as well as discrete frames in both finite and infinite dimensional Hilbert spaces received significant attention. The quantum detection problem pertaining to the characterization of informationally complete positive operator-valued measures (POVM) can be split into two cases: The quantum injectivity or state separability problem and the rang analysis or quantum state estimation problem. Building upon this notion, this note is aimed at the quantum detection problem for fusion frames. The injectivity of a family of vectors and a family of closed subspaces is characterized in terms of some operator equations in Hilbert–Schmidt and trace classes.","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219887824500671","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A quantum injective frame is a frame whose measurements for density operators can be used as a distinguishing feature in a quantum system, and the frame quantum detection problem demands a characterization of all such frames. Very recently, the quantum detection problem for continuous as well as discrete frames in both finite and infinite dimensional Hilbert spaces received significant attention. The quantum detection problem pertaining to the characterization of informationally complete positive operator-valued measures (POVM) can be split into two cases: The quantum injectivity or state separability problem and the rang analysis or quantum state estimation problem. Building upon this notion, this note is aimed at the quantum detection problem for fusion frames. The injectivity of a family of vectors and a family of closed subspaces is characterized in terms of some operator equations in Hilbert–Schmidt and trace classes.
期刊介绍:
This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.